
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 12.2
Ex 12.2, 2
Ex 12.2, 3 You are here
Ex 12.2, 4 (i) Important
Ex 12.2, 4 (ii)
Ex 12.2, 4 (iii) Important
Ex 12.2, 4 (iv)
Ex 12.2, 5
Ex 12.2, 6
Ex 12.2, 7 (i) Important
Ex 12.2, 7 (ii)
Ex 12.2, 7 (iii) Important
Ex 12.2, 8
Ex 12.2, 9 (i)
Ex 12.2, 9 (ii) Important
Ex 12.2, 9 (iii)
Ex 12.2, 9 (iv) Important
Ex 12.2, 9 (v)
Ex 12.2, 9 (vi)
Ex 12.2, 10 Important
Ex 12.2, 11 (i)
Ex 12.2, 11 (ii) Important
Ex 12.2, 11 (iii) Important
Ex 12.2, 11 (iv)
Ex 12.2, 11 (v) Important
Ex 12.2, 11 (vi)
Ex 12.2, 11 (vii) Important
Last updated at May 29, 2023 by Teachoo
Ex 12.2, 3 Find the derivative of 99x at x = 100 Let f (x) = x We need to find derivative of f(x) at x = 100 i.e. fβ (100) We know that fβ (x) = (πππ)β¬(ββ0)β‘γ(π(π₯ + β) β π (π₯))/βγ Here, f(x) = 99x So, f(x + h) = 99(x + h) = 99x + 99h Putting values fβ (x) = limβ¬(hβ0)β‘γ((99π₯ +99β) β 99π₯)/βγ = limβ¬(hβ0)β‘γ(99π₯ +99β β 99π₯)/βγ = limβ¬(hβ0)β‘γ99β/βγ = limβ¬(hβ0) 99 = 99 Hence, fβ(x) = 99 Putting x = 100 fβ(100) = 99 So, derivative of 99x at x = 100 is 99