

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 12.2
Ex 12.2, 2
Ex 12.2, 3
Ex 12.2, 4 (i) Important
Ex 12.2, 4 (ii)
Ex 12.2, 4 (iii) Important
Ex 12.2, 4 (iv)
Ex 12.2, 5
Ex 12.2, 6
Ex 12.2, 7 (i) Important
Ex 12.2, 7 (ii)
Ex 12.2, 7 (iii) Important
Ex 12.2, 8
Ex 12.2, 9 (i)
Ex 12.2, 9 (ii) Important
Ex 12.2, 9 (iii)
Ex 12.2, 9 (iv) Important
Ex 12.2, 9 (v)
Ex 12.2, 9 (vi)
Ex 12.2, 10 Important
Ex 12.2, 11 (i)
Ex 12.2, 11 (ii) Important
Ex 12.2, 11 (iii) Important
Ex 12.2, 11 (iv) You are here
Ex 12.2, 11 (v) Important
Ex 12.2, 11 (vi)
Ex 12.2, 11 (vii) Important
Last updated at May 29, 2023 by Teachoo
Ex 12.2, 11 Find the derivative of the following functions: (iv) cosec x Let f (x) = cosec x f(x) = 1/sin𝑥 Let u = 1 & v = sin x ∴ f(x) = 𝑢/𝑣 So, f’(x) = (𝑢/𝑣)^′ Using quotient rule f’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 Finding u’ & v’ u = 1 u’ = 0 & v = sin x v’ = cos x Now, f’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 = (0 (sin〖𝑥) −〖 cos〗〖𝑥 (1)〗 〗)/(〖𝑠𝑖𝑛〗^2 𝑥) (Derivative of constant function = 0) (Derivative of sin x = cos x) = (0 − 𝑐𝑜𝑠 𝑥)/(〖𝑠𝑖𝑛〗^2 𝑥) = (− 𝑐𝑜𝑠 𝑥)/(〖𝑠𝑖𝑛〗^2 𝑥) = (− 𝑐𝑜𝑠 𝑥)/sin𝑥 . 1/sin𝑥 = – cot x cosec x = – cosec x cot x Hence f’(x) = – cosec x cot x Using cot x = 𝑐𝑜𝑠/sin𝑥 & 1/sin𝑥 = cosec x