Slide62.JPG

Slide63.JPG
Slide64.JPG


Transcript

Ex 12.2, 11 Find the derivative of the following functions: (iv) cosec x Let f (x) = cosec x f(x) = 1/sin⁑π‘₯ Let u = 1 & v = sin x ∴ f(x) = 𝑒/𝑣 So, f’(x) = (𝑒/𝑣)^β€² Using quotient rule f’(x) = (𝑒^β€² 𝑣 βˆ’γ€– 𝑣〗^β€² 𝑒)/𝑣^2 Finding u’ & v’ u = 1 u’ = 0 & v = sin x v’ = cos x Now, f’(x) = (𝑒^β€² 𝑣 βˆ’γ€– 𝑣〗^β€² 𝑒)/𝑣^2 = (0 (sin⁑〖π‘₯) βˆ’γ€– cos〗⁑〖π‘₯ (1)γ€— γ€—)/(〖𝑠𝑖𝑛〗^2 π‘₯) (Derivative of constant function = 0) (Derivative of sin x = cos x) = (0 βˆ’ π‘π‘œπ‘  π‘₯)/(〖𝑠𝑖𝑛〗^2 π‘₯) = (βˆ’ π‘π‘œπ‘  π‘₯)/(〖𝑠𝑖𝑛〗^2 π‘₯) = (βˆ’ π‘π‘œπ‘  π‘₯)/sin⁑π‘₯ . 1/sin⁑π‘₯ = – cot x cosec x = – cosec x cot x Hence f’(x) = – cosec x cot x Using cot x = π‘π‘œπ‘ /sin⁑π‘₯ & 1/sin⁑π‘₯ = cosec x

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.