


Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 13.2
Ex 13.2, 2
Ex 13.2, 3
Ex 13.2, 4 (i) Important
Ex 13.2, 4 (ii)
Ex 13.2, 4 (iii) Important
Ex 13.2, 4 (iv)
Ex 13.2, 5
Ex 13.2, 6
Ex 13.2, 7 (i) Important
Ex 13.2, 7 (ii)
Ex 13.2, 7 (iii) Important
Ex 13.2, 8
Ex 13.2, 9 (i)
Ex 13.2, 9 (ii) Important
Ex 13.2, 9 (iii)
Ex 13.2, 9 (iv) Important You are here
Ex 13.2, 9 (v)
Ex 13.2, 9 (vi)
Ex 13.2, 10 Important
Ex 13.2, 11 (i)
Ex 13.2, 11 (ii) Important
Ex 13.2, 11 (iii) Important
Ex 13.2, 11 (iv)
Ex 13.2, 11 (v) Important
Ex 13.2, 11 (vi)
Ex 13.2, 11 (vii) Important
Last updated at Sept. 6, 2021 by Teachoo
Ex 13.2,9 (Method 1) Find the derivative of (iv) x5 (3 − 6x−9 ). Let f (x) = x5 (3 − 6x−9 ) Let u = x5 & v = 3 – 6x–9 So, f(x) = uv ∴ f’(x) = (uv)’ f’(x) = u’v + v’ u Finding u’ & v’ u = x5 u’ = 5x5 – 1 u’ = 5x4 v = 3 − 6x−9 v’ = 0 – 6( –9)x–10 v’ = 54x–10 Now, f’(x) = (uv)’ = u’v + v’ u = 5x4 (3 – 6x–9) + 54x–10 (x5) = 15x4 – 30x–9 + 4 + 54x–10 + 5 = 15x4 – 30x –5 + 54x –5 = 15x4 + 24x –5 = 15x4 + 24x –5 = 15x4 + 24/𝑥^5 Hence f’(x) = 15x4 + 𝟐𝟒/𝒙^𝟓 Ex 13.2, 9 (Method 2) Find the derivative of (iv) x5 (3 − 6x−9 ). x5 (3 − 6x−9 ). = 〖3𝑥〗^5 − 〖6𝑥〗^(−4) Differentiating w.r.t.x 〖15𝑥〗^4 −6 [−4𝑥^(−5)] =〖15𝑥〗^4+24𝑥^(−5) = 15x4 + 𝟐𝟒/𝒙^𝟓