

Are ads bothering you?
Ex 13.2 (Term 2)
Ex 13.2, 2
Ex 13.2, 3
Ex 13.2, 4 (i) Important
Ex 13.2, 4 (ii)
Ex 13.2, 4 (iii) Important
Ex 13.2, 4 (iv)
Ex 13.2, 5
Ex 13.2, 6
Ex 13.2, 7 (i) Important
Ex 13.2, 7 (ii)
Ex 13.2, 7 (iii) Important
Ex 13.2, 8
Ex 13.2, 9 (i)
Ex 13.2, 9 (ii) Important
Ex 13.2, 9 (iii)
Ex 13.2, 9 (iv) Important
Ex 13.2, 9 (v)
Ex 13.2, 9 (vi)
Ex 13.2, 10 Important
Ex 13.2, 11 (i)
Ex 13.2, 11 (ii) Important You are here
Ex 13.2, 11 (iii) Important
Ex 13.2, 11 (iv)
Ex 13.2, 11 (v) Important
Ex 13.2, 11 (vi)
Ex 13.2, 11 (vii) Important
Last updated at Sept. 6, 2021 by Teachoo
Ex 13.2, 11 Find the derivative of the following functions: (ii) sec x Let f (x) = sec x f(x) = 1/cosβ‘π₯ Let u = 1 & v = cos x So, f(x) = π’/π£ β΄ fβ(x) = (π’/π£)^β² Using quotient rule fβ(x) = (π’^β² π£ β π£^β² π’)/π£^2 Finding uβ & vβ u = 1 uβ = 0 & v = cos x vβ = β sin x Now, fβ(x) = (π’^β² π£ β π£^β² π’)/π£^2 = (0(cosβ‘γπ₯) β (βsinβ‘γπ₯) (1)γ γ)/(γπππ γ^2 π₯) (Derivative of constant is 0) (Derivative of cos x = β sin x) = (0 +γ sinγβ‘π₯)/(γπππ γ^2 π₯) = γ sinγβ‘π₯/(γπππ γ^2 π₯) = γ sinγβ‘π₯/cosβ‘π₯ . 1/cosβ‘π₯ = tan x . sec x Hence fβ(x) = tan x . sec x Using tan ΞΈ = sinβ‘π/πππ π & 1/cosβ‘π = sec ΞΈ