

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 13.2
Ex 13.2, 2
Ex 13.2, 3
Ex 13.2, 4 (i) Important
Ex 13.2, 4 (ii)
Ex 13.2, 4 (iii) Important
Ex 13.2, 4 (iv)
Ex 13.2, 5
Ex 13.2, 6
Ex 13.2, 7 (i) Important
Ex 13.2, 7 (ii)
Ex 13.2, 7 (iii) Important
Ex 13.2, 8
Ex 13.2, 9 (i)
Ex 13.2, 9 (ii) Important
Ex 13.2, 9 (iii)
Ex 13.2, 9 (iv) Important
Ex 13.2, 9 (v)
Ex 13.2, 9 (vi)
Ex 13.2, 10 Important
Ex 13.2, 11 (i)
Ex 13.2, 11 (ii) Important You are here
Ex 13.2, 11 (iii) Important
Ex 13.2, 11 (iv)
Ex 13.2, 11 (v) Important
Ex 13.2, 11 (vi)
Ex 13.2, 11 (vii) Important
Last updated at Sept. 6, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 13.2, 11 Find the derivative of the following functions: (ii) sec x Let f (x) = sec x f(x) = 1/cos𝑥 Let u = 1 & v = cos x So, f(x) = 𝑢/𝑣 ∴ f’(x) = (𝑢/𝑣)^′ Using quotient rule f’(x) = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 Finding u’ & v’ u = 1 u’ = 0 & v = cos x v’ = – sin x Now, f’(x) = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 = (0(cos〖𝑥) − (−sin〖𝑥) (1)〗 〗)/(〖𝑐𝑜𝑠〗^2 𝑥) (Derivative of constant is 0) (Derivative of cos x = – sin x) = (0 +〖 sin〗𝑥)/(〖𝑐𝑜𝑠〗^2 𝑥) = 〖 sin〗𝑥/(〖𝑐𝑜𝑠〗^2 𝑥) = 〖 sin〗𝑥/cos𝑥 . 1/cos𝑥 = tan x . sec x Hence f’(x) = tan x . sec x Using tan θ = sin𝜃/𝑐𝑜𝑠𝜃 & 1/cos𝜃 = sec θ