Slide58.JPG

Slide59.JPG
Slide60.JPG

Go Ad-free

Transcript

Ex 12.2, 11 Find the derivative of the following functions: (ii) sec x Let f (x) = sec x f(x) = 1/cos⁑π‘₯ Let u = 1 & v = cos x So, f(x) = 𝑒/𝑣 ∴ f’(x) = (𝑒/𝑣)^β€² Using quotient rule f’(x) = (𝑒^β€² 𝑣 βˆ’ 𝑣^β€² 𝑒)/𝑣^2 Finding u’ & v’ u = 1 u’ = 0 & v = cos x v’ = – sin x Now, f’(x) = (𝑒^β€² 𝑣 βˆ’ 𝑣^β€² 𝑒)/𝑣^2 = (0(cos⁑〖π‘₯) βˆ’ (βˆ’sin⁑〖π‘₯) (1)γ€— γ€—)/(γ€–π‘π‘œπ‘ γ€—^2 π‘₯) (Derivative of constant is 0) (Derivative of cos x = – sin x) = (0 +γ€– sin〗⁑π‘₯)/(γ€–π‘π‘œπ‘ γ€—^2 π‘₯) = γ€– sin〗⁑π‘₯/(γ€–π‘π‘œπ‘ γ€—^2 π‘₯) = γ€– sin〗⁑π‘₯/cos⁑π‘₯ . 1/cos⁑π‘₯ = tan x . sec x Hence f’(x) = tan x . sec x Using tan ΞΈ = sinβ‘πœƒ/π‘π‘œπ‘ πœƒ & 1/cosβ‘πœƒ = sec ΞΈ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.