Slide53.JPG

Slide54.JPG
Slide55.JPG


Transcript

Ex 12.2, 10 Find the derivative of cos x from first principle. Let f (x) = cos x We need to find f’(x) We know that f’(x) = (π‘™π‘–π‘š)┬(β„Žβ†’0) 𝑓⁑〖(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)γ€—/β„Ž Here, f (x) = cos x So, f (x + h) = cos (x + h) Putting values, f’ (x) = lim┬(hβ†’0)⁑〖(𝒄𝒐𝒔 (𝒙 + 𝒉) βˆ’γ€– 𝒄𝒐𝒔〗⁑𝒙)/hγ€— Using cos A – cos B = – 2 sin ((𝐴 + 𝐡)/2) sin ((𝐴 βˆ’ 𝐡)/2) = lim┬(hβ†’0)⁑〖(βˆ’πŸ π’”π’Šπ’((𝒙 + (𝒙 + 𝒉))/𝟐) . π’”π’Šπ’(((𝒙 + 𝒉) βˆ’ 𝒙)/𝟐))/hγ€— = lim┬(hβ†’0)⁑〖(βˆ’2 𝑠𝑖𝑛((2π‘₯ + β„Ž)/2) . 𝑠𝑖𝑛(β„Ž/2))/hγ€— = lim┬(hβ†’0)β‘γ€–βˆ’2 sin⁑((2π‘₯ + β„Ž)/2).γ€–sin γ€—β‘γ€–β„Ž/2γ€—/β„Žγ€— = lim┬(hβ†’0)β‘γ€–βˆ’sin⁑((2π‘₯ + β„Ž)/2).γ€–sin γ€—β‘γ€–β„Ž/2γ€—/(β„Ž/2)γ€— Using (π‘™π‘–π‘š)┬(π‘₯β†’0)⁑〖 𝑠𝑖𝑛⁑π‘₯/π‘₯γ€—=1 Replacing x by β„Ž/2 β‡’ (π‘™π‘–π‘š)┬(β„Žβ†’0) 𝑠𝑖𝑛⁑〖 β„Ž/2γ€—/(( β„Ž)/2) = 1 = lim┬(hβ†’0)β‘γ€–βˆ’sin⁑((2π‘₯ + β„Ž)/2).(π₯𝐒𝐦)┬(π‘β†’πŸŽ) 〖𝐬𝐒𝐧 〗⁑〖𝒉/πŸγ€—/(𝒉/𝟐)γ€— = lim┬(hβ†’0)β‘γ€–βˆ’sin⁑((2π‘₯ + β„Ž)/2).πŸγ€— = lim┬(hβ†’0)β‘γ€–βˆ’sin⁑((2π‘₯ + β„Ž)/2) γ€— Putting h = 0 = βˆ’sin⁑((2π‘₯ +0)/2) = βˆ’sin⁑(2π‘₯/2) = – sin x ∴ f’(x) = –sin x

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.