Check sibling questions

Ex 13.2, 4 - Chapter 13 Class 11 Limits and Derivatives - Part 4

Ex 13.2, 4 - Chapter 13 Class 11 Limits and Derivatives - Part 5
Ex 13.2, 4 - Chapter 13 Class 11 Limits and Derivatives - Part 6

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 13.2, 4 Find the derivative of the following functions from first principle. (ii) (x – 1) (x – 2) Let f (x) = (x – 1) (x – 2) = x(x – 2) – 1 (x – 2) = x2 – 2x – x + 2 = x2 – 3x + 2 We need to find Derivative of f(x) i.e. f’ (x) We know that f’(x) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓⁡〖(𝑥 + ℎ) − 𝑓(𝑥)〗/ℎ Here, f(x) = x2 – 3x + 2 So, f(x + h) = (x + h)2 – 3 (x + h) + 2 Putting values f’(x) = (𝑙𝑖𝑚)┬(ℎ→0)⁡〖([(𝑥 + ℎ)2 − 3(𝑥 + ℎ) + 2] − (𝑥2 − 3 + 2))/ℎ〗 = (𝑙𝑖𝑚)┬(ℎ→0)⁡〖((𝑥 + ℎ)2 − 3𝑥 − 3ℎ + 2 − 𝑥2 + 3𝑥 − 2)/ℎ〗 = (𝑙𝑖𝑚)┬(ℎ→0)⁡〖((𝑥 + ℎ)2 −3ℎ − 𝑥2 + 3𝑥 − 3𝑥 + 2 − 2)/ℎ〗 = (𝑙𝑖𝑚)┬(ℎ→0)⁡〖((𝑥 + ℎ)2 − 𝑥2 −3ℎ )/ℎ〗 = (𝑙𝑖𝑚)┬(ℎ→0)⁡〖(𝑥2 + ℎ2+ 2𝑥ℎ − 𝑥2 −3ℎ )/ℎ〗 = (𝑙𝑖𝑚)┬(ℎ→0)⁡〖(ℎ2 + 2𝑥ℎ − 3ℎ − 𝑥2 + 𝑥2)/ℎ〗 = (𝑙𝑖𝑚)┬(ℎ→0)⁡〖(ℎ (ℎ + 2𝑥 − 3) )/ℎ〗 = lim┬(h→0)⁡〖ℎ+2𝑥 −3〗 Putting h = 0 = 0 + 2x – 3 = 2x – 3 Hence f’(x) = 2x – 3

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.