Get live Maths 1-on-1 Classs - Class 6 to 12

Ex 13.2

Ex 13.2, 1

Ex 13.2, 2

Ex 13.2, 3

Ex 13.2, 4 (i) Important

Ex 13.2, 4 (ii)

Ex 13.2, 4 (iii) Important

Ex 13.2, 4 (iv)

Ex 13.2, 5

Ex 13.2, 6

Ex 13.2, 7 (i) Important

Ex 13.2, 7 (ii)

Ex 13.2, 7 (iii) Important

Ex 13.2, 8

Ex 13.2, 9 (i)

Ex 13.2, 9 (ii) Important

Ex 13.2, 9 (iii)

Ex 13.2, 9 (iv) Important

Ex 13.2, 9 (v)

Ex 13.2, 9 (vi) You are here

Ex 13.2, 10 Important

Ex 13.2, 11 (i)

Ex 13.2, 11 (ii) Important

Ex 13.2, 11 (iii) Important

Ex 13.2, 11 (iv)

Ex 13.2, 11 (v) Important

Ex 13.2, 11 (vi)

Ex 13.2, 11 (vii) Important

Last updated at March 22, 2023 by Teachoo

Ex 13.2, 9 Find the derivative of (vi) f(x) = 2/(x + 1) – x2/(3x − 1) Let f (x) = 2/(x + 1) – x2/(3x − 1) Let f1 (x) = 2/(x + 1) & f2 (x) = x2/(3x − 1) ∴ f(x) = f1(x) – f2 (x) So, f’(x) = (f1(x) – f2(x))’ f’(x) = f’1(x) – f’2(x) Finding f1‘(x) f1 (x) = 2/(𝑥 + 1) Let u = 2 & v = x + 1 ∴ f1(x) = 𝑢/𝑣 Now, f1’(x) = (𝑢/𝑣)^′ f1’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 u = 2 u’ = 0 v = x + 1 v’ = 1 + 0 = 1 f’1(x) = (𝑢/𝑣)^′ = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 = (0(𝑥 + 1) −1 (2))/(𝑥 + 1)2 = (−2)/〖(𝑥 + 1)〗^2 Hence, f1’ (x) = (−2)/(𝑥 + 1)2 Finding f2‘(x) f2 (x) = 𝑥2/(3𝑥 − 1) Let u = x2 & v = 3x – 1 Now, f2’(x) = (𝑢/𝑣)^′ f2’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 Finding u’ & v’ u = x2 u’ = 2x2 – 1 = 2x & v = 3x – 1 v’ = 3(1) – 0 = 3 f’2(x) = (𝑢/𝑣)^′ (xn)’ = nxn – 1 & (a)’ = 0 where a is constant = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 = (2𝑥(3𝑥 − 1) − 3 (𝑥2))/(3𝑥 − 1)2 = (6𝑥2 − 2𝑥 − 3𝑥2)/〖(3𝑥 − 1)〗^2 = (3𝑥2 − 2𝑥 )/〖(3𝑥 − 1)〗^2 = (𝑥(3𝑥 − 2))/〖(3𝑥 − 1)〗^2 Hence f’2(x) = (𝑥 (3𝑥 − 2))/(3𝑥 − 1)2 Now f’ (x) = f1’(x) – f2’ (x) = (−𝟐)/(𝒙 + 𝟏)𝟐 – (𝒙(𝟑𝒙 − 𝟐))/(𝟑𝒙 − 𝟏)𝟐