Check sibling questions

Ex 13.2, 4 - Chapter 13 Class 11 Limits and Derivatives - Part 7

Ex 13.2, 4 - Chapter 13 Class 11 Limits and Derivatives - Part 8
Ex 13.2, 4 - Chapter 13 Class 11 Limits and Derivatives - Part 9

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 12.2, 4 Find the derivative of the following functions from first principle. (iii) 1/๐‘ฅ^2 Let f (x) = 1/๐‘ฅ^2 We need to find derivative of f(x) i.e. fโ€™ (x) We know that fโ€™(x) = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0) ๐‘“โกใ€–(๐‘ฅ + โ„Ž) โˆ’ ๐‘“(๐‘ฅ)ใ€—/โ„Ž Here, f (x) = 1/๐‘ฅ^2 So, f (x + h) = 1/ใ€–(๐‘ฅ + โ„Ž)ใ€—^2 Putting values fโ€™(x) = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0)โกใ€–(1/ใ€–(๐‘ฅ + โ„Ž)ใ€—^2 โˆ’ 1/๐‘ฅ^2 )/โ„Žใ€— = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0)โกใ€–(ใ€–ใ€–๐‘ฅ ใ€—^2 โˆ’ (๐‘ฅ + โ„Ž)ใ€—^2/(ใ€–(๐‘ฅ + โ„Ž)ใ€—^2 ๐‘ฅ^2 ))/โ„Žใ€— = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0)โกใ€–( ๐‘ฅ2 โˆ’ (๐‘ฅ + โ„Ž)2)/(โ„Ž๐‘ฅ2 (๐‘ฅ + โ„Ž)2)ใ€— = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0)โกใ€–((๐‘ฅ โˆ’ ( ๐‘ฅ + โ„Ž )) (๐‘ฅ + (๐‘ฅ + โ„Ž)))/(โ„Ž๐‘ฅ2 (๐‘ฅ + โ„Ž)2)ใ€— = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0)โกใ€–( (๐‘ฅ โˆ’๐‘ฅ โˆ’ โ„Ž) (๐‘ฅ + ๐‘ฅ + โ„Ž))/(โ„Ž.๐‘ฅ2 (๐‘ฅ + โ„Ž)2)ใ€— (As a2 โ€“ b2 = (a โ€“ b) (a + b)) = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0)โกใ€–((โˆ’โ„Ž)(2๐‘ฅ + โ„Ž))/(โ„Ž๐‘ฅ2 (๐‘ฅ + โ„Ž)2)ใ€— = (๐‘™๐‘–๐‘š)โ”ฌ(โ„Žโ†’0)โกใ€–((โˆ’1) 2๐‘ฅ + โ„Ž)/(๐‘ฅ2 (๐‘ฅ + โ„Ž)2)ใ€— Putting h = 0 = ((โˆ’1) 2๐‘ฅ + 0)/(๐‘ฅ2 (๐‘ฅ + 0)2) = ((โˆ’1) 2๐‘ฅ)/(๐‘ฅ2 (๐‘ฅ)2) = (โˆ’2๐‘ฅ)/๐‘ฅ4 = (โˆ’2)/๐‘ฅ^3 Thus, fโ€™(x) = (โˆ’๐Ÿ)/๐’™^๐Ÿ‘

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.