Ex 12.2, 4 - Find derivative of f(x) = (x + 1) / (x - 1) from first pr - Ex 12.2

part 2 - Ex 12.2, 4 (iv) - Ex 12.2 - Serial order wise - Chapter 12 Class 11 Limits and Derivatives
part 3 - Ex 12.2, 4 (iv) - Ex 12.2 - Serial order wise - Chapter 12 Class 11 Limits and Derivatives

Share on WhatsApp

Transcript

Ex 12.2, 4 Find the derivative of the following functions from first principle. (iv) (π‘₯ + 1)/(π‘₯ βˆ’ 1) Let f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) We need to find Derivative of f(x) i.e. f’ (x) We know that f’(x) = lim┬(hβ†’0) f⁑〖(x + h) βˆ’ f(x)γ€—/h Here, f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) So, f (x + h) = ((π‘₯ + β„Ž) + 1)/((π‘₯ + β„Ž) βˆ’ 1) Ex 12.2, 4 Find the derivative of the following functions from first principle. (iv) (π‘₯ + 1)/(π‘₯ βˆ’ 1) Let f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) We need to find Derivative of f(x) i.e. f’ (x) We know that f’(x) = lim┬(hβ†’0) f⁑〖(x + h) βˆ’ f(x)γ€—/h Here, f (x) = (π‘₯ + 1)/(π‘₯ βˆ’ 1) So, f (x + h) = ((π‘₯ + β„Ž) + 1)/((π‘₯ + β„Ž) βˆ’ 1) Putting values f’(x) = lim┬(hβ†’0)⁑〖([((π‘₯ + β„Ž) + 1)/(π‘₯ + β„Ž βˆ’ 1)] βˆ’[ (π‘₯ + 1)/(π‘₯ βˆ’ 1)])/hγ€— = lim┬(hβ†’0)⁑〖((π‘₯ + β„Ž + 1)/(π‘₯ + β„Ž βˆ’ 1) βˆ’ (π‘₯ + 1)/(π‘₯ βˆ’ 1))/hγ€— = lim┬(hβ†’0)⁑〖(((π‘₯ βˆ’ 1)(π‘₯ + β„Ž + 1) βˆ’ (π‘₯ + 1)( π‘₯ + β„Ž βˆ’ 1))/(( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1)))/β„Žγ€— = lim┬(hβ†’0)⁑〖((π‘₯ βˆ’ 1) ((π‘₯ + 1) + β„Ž) βˆ’ (π‘₯ + 1)( (π‘₯ βˆ’ 1) + β„Ž))/(β„Ž( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1))γ€— = lim┬(hβ†’0)⁑〖((π‘₯ βˆ’ 1)(π‘₯ + 1) + (π‘₯ βˆ’1)β„Ž βˆ’ (π‘₯ + 1)(π‘₯ βˆ’ 1) βˆ’ (π‘₯ + 1) β„Ž)/(β„Ž( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1))γ€— = lim┬(hβ†’0)⁑〖((π‘₯2 βˆ’ 1) + π‘₯β„Ž βˆ’ (π‘₯2 βˆ’ 1) βˆ’ π‘₯β„Ž βˆ’ β„Ž)/(β„Ž( π‘₯ + β„Ž βˆ’ 1 ) (π‘₯ βˆ’ 1))γ€— = (π‘™π‘–π‘š)┬(β„Žβ†’0)⁑〖(βˆ’ 2β„Ž )/(β„Ž (π‘₯ + β„Ž βˆ’ 1) (π‘₯ βˆ’ 1))γ€— = lim┬(hβ†’0)⁑〖(βˆ’2)/((π‘₯ + β„Ž βˆ’ 1) (π‘₯ βˆ’ 1))γ€— Putting h = 0 = (βˆ’2)/((π‘₯ + 0 βˆ’ 1)(π‘₯ βˆ’ 1)) = (βˆ’2)/((π‘₯ βˆ’ 1) (π‘₯ βˆ’ 1)) = (βˆ’2)/(π‘₯ βˆ’ 1)^2 Hence, f’(x) = (βˆ’πŸ)/(𝒙 βˆ’ 𝟏)^𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo