Check sibling questions

 


Transcript

Ex 10.3, 16 (Introduction) Show that the points A (1, 2, 7), B (2, 6, 3) & C (3, 10, โ€“1) are collinear. (1) Three points collinear i.e. AB + BC = AC (2) Three vectors collinear i.e. |(๐ด๐ต) โƒ— | + |(๐ต๐ถ) โƒ— | = |(๐ด๐ถ) โƒ— | (๐ต๐ถ) โƒ— = (3 โˆ’ 2) ๐‘– ฬ‚ + (10 โˆ’ 6) ๐‘— ฬ‚ + (โˆ’1 โˆ’ 3) ๐‘˜ ฬ‚ = 1๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚ (๐ด๐ถ) โƒ— = (3 โˆ’ 1) ๐‘– ฬ‚ + (10 โˆ’ 2) ๐‘— ฬ‚ + (โˆ’1 โˆ’ 7) ๐‘˜ ฬ‚ = 2๐‘– ฬ‚ + 8๐‘— ฬ‚ โˆ’ 8๐‘˜ ฬ‚ Magnitude of (๐ด๐ต) โƒ— = โˆš(12+42+(โˆ’4)2) |(๐ด๐ต) โƒ— | = โˆš(1+16+16) = โˆš33 Magnitude of (๐ต๐ถ) โƒ— = โˆš(12+42+(โˆ’4)2) |(๐ต๐ถ) โƒ— | = โˆš(1+16+16) = โˆš33 Magnitude of (๐ด๐ถ) โƒ— = โˆš(22+82+(โˆ’8)2) |(๐ต๐ถ) โƒ— | = โˆš(4+64+64) = โˆš132 = โˆš(4ร—33 ) = 2โˆš(33 ) Thus, |(๐ด๐ต) โƒ— | + |(๐ต๐ถ) โƒ— | = โˆš(33 ) + โˆš(33 ) = 2โˆš(33 ) = |(๐ด๐ถ) โƒ— | Thus, A, B and C are collinear.

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo