Check sibling questions


Transcript

Ex 10.3, 15 (Introduction) If the vertices A, B, C of a triangle ABC are (1,2,3), (โ€“1, 0, 0), (0, 1, 2) respectively, then find โˆ ABC. [โˆ ABC is the angle between the vectors (๐ต๐ด) โƒ— and (๐ต๐ถ) โƒ—]. Consider a triangle ABC as shown โˆ  ABC is not the angle between vectors (๐ด๐ต) โƒ— and (๐ต๐ถ) โƒ— But the angle between vectors (๐ต๐ด) โƒ— and (๐ต๐ถ) โƒ— โˆด โˆ  ABC = Angle between vectors (๐ต๐ด) โƒ— and (๐ต๐ถ) โƒ— Ex 10.3, 15 If the vertices A, B, C of a triangle ABC are (1,2,3), (โ€“1, 0, 0), (0, 1, 2) respectively, then find โˆ ABC. [โˆ ABC is the angle between the vectors (๐ต๐ด) ฬ… and (๐ต๐ถ) ฬ…]. A (1, 2, 3) B (โˆ’1, 0, 0) C (0, 1, 2) โˆ ABC = Angle b/w (๐ต๐ด) โƒ— and (๐ต๐ถ) โƒ— We use formula ๐‘Ž โƒ—. ๐‘ โƒ— = |๐‘Ž โƒ— | |๐‘ โƒ— | cos ฮธ , ฮธ is the angle b/w ๐‘Ž โƒ— & ๐‘ โƒ— We find (๐ต๐ด) โƒ— and (๐ต๐ถ) โƒ— (๐ต๐ด) โƒ— = (1 โˆ’ (-1)) ๐‘– ฬ‚ + (2 โ€“ 0) ๐‘— ฬ‚ + (3 โ€“ 0) ๐‘˜ ฬ‚ = 2๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ (๐ต๐ถ) โƒ— = (0 โˆ’ (โˆ’1)) ๐‘– ฬ‚ + (1 โˆ’ 0) ๐‘— ฬ‚ + (2 โˆ’ 0) ๐‘˜ ฬ‚ = 1๐‘– ฬ‚ + 1๐‘— ฬ‚ + 2๐‘˜ ฬ‚ Now, (๐‘ฉ๐‘จ) โƒ— . (๐‘ฉ๐‘ช) โƒ— = ("2" ๐‘– ฬ‚" + " 2๐‘— ฬ‚" + " 3๐‘˜ ฬ‚) . ("1" ๐‘– ฬ‚" + " 1๐‘— ฬ‚" + " 2๐‘˜ ฬ‚) = 2.1+2.1+3.2 = 2+2+6 = 10 Magnitude of (๐ต๐ถ) โƒ— = โˆš(12+12+22) |(๐‘ฉ๐‘ช) โƒ— | = โˆš(1+1+4) = โˆš๐Ÿ” Also, (๐ต๐ด) โƒ— . (๐ต๐ถ) โƒ— = |(๐ต๐ด) โƒ— | . |(๐ต๐ถ) โƒ— | cos ฮธ 10 = โˆš17 ร— โˆš6 ร— cos ฮธ โˆš17 ร— โˆš6 ร— cos ฮธ = 10 cos ฮธ = 10/(โˆš17 ร—โˆš6) cos ฮธ = 10/โˆš102 ฮธ = cosโˆ’1 (10/โˆš102) Thus โˆ ABC = cosโˆ’1 (๐Ÿ๐ŸŽ/โˆš๐Ÿ๐ŸŽ๐Ÿ).

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo