Last updated at Feb. 17, 2025 by Teachoo
Ex 10.3, 15 (Introduction) If the vertices A, B, C of a triangle ABC are (1,2,3), (โ1, 0, 0), (0, 1, 2) respectively, then find โ ABC. [โ ABC is the angle between the vectors (๐ต๐ด) โ and (๐ต๐ถ) โ]. Consider a triangle ABC as shown โ ABC is not the angle between vectors (๐ด๐ต) โ and (๐ต๐ถ) โ But the angle between vectors (๐ต๐ด) โ and (๐ต๐ถ) โ โด โ ABC = Angle between vectors (๐ต๐ด) โ and (๐ต๐ถ) โ Ex 10.3, 15 If the vertices A, B, C of a triangle ABC are (1,2,3), (โ1, 0, 0), (0, 1, 2) respectively, then find โ ABC. [โ ABC is the angle between the vectors (๐ต๐ด) ฬ and (๐ต๐ถ) ฬ ]. A (1, 2, 3) B (โ1, 0, 0) C (0, 1, 2) โ ABC = Angle b/w (๐ต๐ด) โ and (๐ต๐ถ) โ We use formula ๐ โ. ๐ โ = |๐ โ | |๐ โ | cos ฮธ , ฮธ is the angle b/w ๐ โ & ๐ โ We find (๐ต๐ด) โ and (๐ต๐ถ) โ (๐ต๐ด) โ = (1 โ (-1)) ๐ ฬ + (2 โ 0) ๐ ฬ + (3 โ 0) ๐ ฬ = 2๐ ฬ + 2๐ ฬ + 3๐ ฬ (๐ต๐ถ) โ = (0 โ (โ1)) ๐ ฬ + (1 โ 0) ๐ ฬ + (2 โ 0) ๐ ฬ = 1๐ ฬ + 1๐ ฬ + 2๐ ฬ Now, (๐ฉ๐จ) โ . (๐ฉ๐ช) โ = ("2" ๐ ฬ" + " 2๐ ฬ" + " 3๐ ฬ) . ("1" ๐ ฬ" + " 1๐ ฬ" + " 2๐ ฬ) = 2.1+2.1+3.2 = 2+2+6 = 10 Magnitude of (๐ต๐ถ) โ = โ(12+12+22) |(๐ฉ๐ช) โ | = โ(1+1+4) = โ๐ Also, (๐ต๐ด) โ . (๐ต๐ถ) โ = |(๐ต๐ด) โ | . |(๐ต๐ถ) โ | cos ฮธ 10 = โ17 ร โ6 ร cos ฮธ โ17 ร โ6 ร cos ฮธ = 10 cos ฮธ = 10/(โ17 รโ6) cos ฮธ = 10/โ102 ฮธ = cosโ1 (10/โ102) Thus โ ABC = cosโ1 (๐๐/โ๐๐๐).
Ex 10.3
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important You are here
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo