Last updated at Dec. 16, 2024 by Teachoo
Ex 10.3, 12 (Introduction) If ๐ โ .๐ โ = 0 & ๐ โ . ๐ โ = 0, then what can be concluded about the vector ๐ โ? ๐ โ . ๐ โ = |๐ โ | |๐ โ | cos ฮธ , ฮธ in the angle b/w ๐ โ and ๐ โ Let ๐ โ = 0 โ = 0๐ ฬ + 0๐ ฬ + 0๐ ฬ ๐ โ = 0๐ ฬ + 0๐ ฬ + 0๐ ฬ Let ๐ โ = 8๐ ฬ โ 5๐ ฬ + 2๐ ฬ ๐ โ. ๐ โ = 0.8 + 0.(โ5) + 0.2 = 0 + 0 + 0 = 0 So, ๐ โ. ๐ โ = 0 ๐ โ = 0๐ ฬ + 0๐ ฬ + 0๐ ฬ Let ๐ โ = 3๐ ฬ โ 4๐ ฬ + 7๐ ฬ ๐ โ. ๐ โ = 0.3 + 0(โ4) + 0.7 = 0 + 0 + 0 = 0 So, ๐ โ. ๐ โ = 0 Hence, if ๐ โ = 0 โ, then ๐ โ.๐ โ = 0 for any vector ๐ โ Ex 10.3, 12 If ๐ โ .๐ โ = 0 and ๐ โ . ๐ โ = 0, then what can be concluded about the vector ๐ โ ? Given, ๐ โ. ๐ โ = 0 |๐ โ | |๐ โ | cos 0 = 0 |๐ โ |2 cos 0 = 0 |๐ โ |2 ร 1 = 0 |๐ โ |2 = 0 |๐ โ | = 0 So, ๐ โ = 0 โ Now it is given, ๐ โ . ๐ โ = 0 0 โ . ๐ โ = 0 is true, for any vector ๐ โ Therefore, if ๐ โ . ๐ โ = 0 and ๐ โ . ๐ โ = 0, then ๐ โ = 0 โ and ๐ โ can be any vector
Ex 10.3
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important You are here
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo