Last updated at Dec. 16, 2024 by Teachoo
Ex 10.3, 5 Show that each of the given three vectors is a unit vector: 1/7 (2๐ ฬ + 3๐ ฬ + 6๐ ฬ), 1/7 (3๐ ฬ โ 6๐ ฬ + 2๐ ฬ), 1/7 (6๐ ฬ + 2๐ ฬ โ 3๐ ฬ), Also, show that they are mutually perpendicular to each other. ๐ โ = 1/7 (2๐ ฬ + 3๐ ฬ + 6๐ ฬ) = 2/7 ๐ ฬ + 3/7 ๐ ฬ + 6/7 ๐ ฬ ๐ โ = 1/7 (3๐ ฬ โ 6๐ ฬ + 2๐ ฬ) = 3/7 ๐ ฬ โ 6/7 ๐ ฬ + 2๐/7 ๐ ฬ ๐ โ = 1/7 (6๐ ฬ + 2๐ ฬ - 3๐ ฬ) = 6/7 ๐ ฬ + 2/7 ๐ ฬ โ 3/7 ๐ ฬ Magnitude of ๐ โ = โ((2/7)^2+(3/7)^2+(6/7)^2 ) |๐ โ | = โ(4/49+9/49+36/49) = โ(49/49) = 1 Since |๐ โ | = 1 So, ๐ โ is a unit vector. Magnitude of ๐ โ = โ((3/7)^2+((โ6)/7)^2+(2/7)^2 ) |๐ โ | = โ(9/49+36/49+4/49)= โ(49/49) = 1 Since |๐ โ | = 1 So, ๐ โ is a unit vector. Magnitude of ๐ โ = โ((6/7)^2+(2/7)^2+((โ3)/7)^2 ) |๐ โ | = โ(36/49+4/49+9/49) = โ(49/49) = 1 Since |๐ โ | = 1, So, ๐ โ is a unit vector Now, we need to show that they are mutually perpendicular to each other. So, ๐ โ. ๐ โ = ๐ โ. ๐ โ = ๐ โ . ๐ โ = 0 Thus, they are mutually perpendiculars to each other. ๐ โ = 2/7 ๐ ฬ + 3/7 ๐ ฬ + 6/7 ๐ ฬ ๐ โ = 3/7 ๐ ฬ โ 6/7 ๐ ฬ + 2/7 ๐ ฬ ๐ โ. ๐ โ = 2/7 . 3/7 + 3/7 (โ6/7) + 6/7 . 2/7 = 6/49 โ 18/49 + 12/49 = 0 ๐ โ = 3/7 ๐ ฬ โ 6/7 ๐ ฬ + 2/7 ๐ ฬ ๐ โ = 6/7 ๐ ฬ + 2/7 ๐ ฬ โ 3/7 ๐ ฬ ๐ โ. ๐ โ = 3/7 . 6/7 + (โ6/7) 2/7 + 2/7 . ((โ3)/7) = 18/49 โ 12/49 โ 6/49 = 0 ๐ โ = 6/7 ๐ ฬ + 2/7 ๐ ฬ โ 3/7 ๐ ฬ ๐ โ = 2/7 ๐ ฬ + 3/7 ๐ ฬ + 6/7 ๐ ฬ ๐ โ. ๐ โ = 6/7 . 2/7 + 2/7. 3/7 + ((โ3)/7) 6/7 = 12/49 + 6/49 โ 18/49 = 0
Ex 10.3
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important You are here
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo