Last updated at Dec. 16, 2024 by Teachoo
Misc 6 Find the equation of a line drawn perpendicular to the line ๐ฅ/4 + ๐ฆ/6 = 1 through the point, where it meets the y-axis. Let equation of line AB be ๐ฅ/4 + ๐ฆ/6 = 1 Above equation is of the form ๐ฅ/๐ + ๐ฆ/b = 1 Where a = x-intercept of line = 4 b = y-intercept of line = 6 Since line AB makes y-intercept 6 โด Line AB meets y-axis at point (0, 6) Let line CD be drawn perpendicular to the line AB through the point where AB meet at the y-axes So, line CD is perpendicular to the line AB & passes through the point (0,6) We need to find the equation of line CD Now, Given that line CD is perpendicular to line AB And we know that if two lines are perpendicular, the product of their slopes is equal to -1 So, slope of line CD ร slope of line AB = โ 1 Slope of CD = ( โ 1)/(๐๐๐๐๐ ๐๐ ๐ด๐ต) Finding slope of line AB Equation of line AB is ๐ฅ/4 + ๐ฆ/6 = 1 (3๐ฅ + 2๐ฆ )/12 = 1 3x + 2y = 12 2y = โ 3x + 12 y = ( โ 3๐ฅ + 12)/2 y = (( โ 3)/2)x + (12/2) The above equation is of the form y = mx + c where m = slope of line โด Slope of line AB = m = ( โ 3)/2 From (1) Slope of CD = ( โ 1)/(๐๐๐๐๐ ๐๐ ๐ด๐ต) = ( โ 1)/(( โ 3)/2) = (โ1 ร 2)/(โ3) = 2/3 We know that equation of line passing through (x1, y1) & having slope m is (y โ y1) = m(x โ x1) Equation of line CD passing through point (0, 6) & having slope 2/3 is (y โ 6) = 2/3 (x โ 0) y โ 6 = 2/3 x 3(y โ 6) = 2x 3y โ 18 = 2x 3y โ 2x โ 18 = 0 โ 3y + 2x + 18 = 0 2x โ 3y + 18 = 0 Which is required equation
Miscellaneous
Misc 2 Important
Misc 3
Misc 4
Misc 5 Important
Misc 6 You are here
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11 Important
Misc 12
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21 Important
Misc 22
Misc 23 Important
Question 1 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo