Check sibling questions

Find ∫(x 3 + x  + 1)/((x 2 - 1) dx

 

 


Transcript

Question 31 Find ∫1▒〖((𝑥^3 + 𝑥 + 1))/((𝑥^2 − 1)) 𝑑𝑥〗∫1▒〖((𝑥^3 + 𝑥 + 1))/((𝑥^2 − 1)) 𝑑𝑥〗 = ∫1▒〖𝒙+(𝟐𝒙 + 𝟏)/((𝒙^𝟐 − 𝟏)) 𝒅𝒙〗 = ∫1▒〖𝑥 𝑑𝑥〗+∫1▒〖(𝟐𝒙 + 𝟏)/((𝒙^𝟐 − 𝟏)) 𝑑𝑥〗 = 𝑥^2/2+∫1▒〖(𝟐𝒙 + 𝟏)/((𝒙^𝟐 − 𝟏)) 𝑑𝑥〗 = 𝒙^𝟐/𝟐+∫1▒〖(𝟐𝒙 + 𝟏)/((𝒙 + 𝟏)(𝒙 − 𝟏)) 𝒅𝒙〗 Now Solving (𝟐𝒙 + 𝟏)/((𝒙 + 𝟏)(𝒙 − 𝟏) ) = 𝑨/((𝒙 + 𝟏)) + 𝑩/((𝒙 − 𝟏)) (2𝑥 + 1)/((𝑥 + 1)(𝑥 − 1) ) = (𝐴(𝑥 − 1) + 𝐵(𝑥 + 1))/((𝑥 + 1)(𝑥 − 1) ) Cancelling denominator 2𝑥+1=𝐴(𝑥−1)+𝐵(𝑥+1) Putting x = 1 in (2) 2𝑥+1=𝐴(𝑥−1)+𝐵(𝑥+1) 2(1)+1 = 𝐴(1−1) + 𝐵(1+1) 3 = A × 0+2𝐵 3 = 2𝐵 𝑩=𝟑/𝟐 Putting x = −1 in (2) 2𝑥+1=𝐴(=1−1)+𝐵(𝑥+1) 2(−1)+1 = 𝐴(−1−1) + 𝐵(−1+1) −2+1 = A × −2+𝐵 × 0 −1 = −2A 1 = 2A 1/2 = A 𝑨=𝟏/𝟐 Hence we can write it as (𝟐𝒙 + 𝟏)/((𝒙 + 𝟏)(𝒙 − 𝟏) ) = 𝑨/((𝒙 + 𝟏)) + 𝑩/((𝒙 − 𝟏)) (𝟐𝒙 + 𝟏)/((𝒙 + 𝟏)(𝒙 − 𝟏) ) = 𝟏/(𝟐(𝒙 + 𝟏)) + 𝟑/(𝟐(𝒙 − 𝟏)) Therefore , from (1) we get, ∫1▒〖((𝑥^3 + 𝑥 + 1))/((𝑥^2 − 1)) 𝑑𝑥〗 =𝑥^2/2+ ∫1▒(1/(2(𝑥 + 1)) " + " 3/(2(𝑥 − 1))) 𝑑𝑥 =𝑥^2/2+ ∫1▒𝑑𝑥/(2(𝑥 + 1))+∫1▒3𝑑𝑥/(2(𝑥 − 1)) =𝒙^𝟐/𝟐+𝟏/𝟐 ∫1▒〖𝒅𝒙/((𝒙 + 𝟏)) + 𝟑/𝟐〗 ∫1▒𝒅𝒙/((𝒙 − 𝟏)) =𝑥^2/2 +1/2 log⁡|(𝑥+1)|+3/2 log⁡|𝑥−1|+𝐶 =𝑥^2/2+1/2 ( log⁡|(𝑥+1)|+3 log⁡|𝑥−1| )+𝐶 =𝑥^2/2+1/2 ( log⁡|(𝑥+1) (𝑥−1)^3 | )+𝐶

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo