Last updated at Dec. 16, 2024 by Teachoo
Ex 5.3, 3 In an AP (viii) Given an = 4, d = 2, Sn = −14, find n and a. Given an = 4, d = 2, Sn = –14 Since there are n terms, 𝑙 = an = 4 We use the formula Sn = 𝒏/𝟐 (𝒂+𝒍) Putting Sn = −14, 𝑙 = an = 4 –14 = 𝑛/2 (𝑎+4) –14 × 2 =𝑛(𝑎+4) –28 = n (a + 4) (−28)/(𝑎 + 4)=𝑛 n = (−𝟐𝟖)/(𝒂 + 𝟒) Also we know that an = a + (n – 1) d Putting an = 4 , d = 2 4 = a + (n – 1) × 2 4 = a + 2n – 2 4 + 2 = a + 2n 6 = a + 2n Putting n = (− 𝟐𝟖)/(𝒂 + 𝟒) 6 = a + 2((− 28)/(𝑎 + 4)) 6 = a − 56/(𝑎 + 4) 6 = (𝑎(𝑎 + 4) − 56)/(𝑎 + 4) 6 = (𝑎2 + 4𝑎 − 56)/(𝑎 + 4) 6 (a + 4) = a2 + 4a – 56 6a + 24 = a2 4a – 56 0 = a2 + 4a – 56 – 6a – 24 0 = a2 – 2a – 80 a2 – 2a – 80 = 0 a2 – 10a + 8a– 80 = 0 a (a – 10) + 8 (a – 8) = 0 (a – 10) (a + 8) = 0 So, a = 10 or a = –8 Taking a = 10 n = (− 28)/(𝑎 + 4) n = (− 28)/(10 + 4) n = (− 28)/14 n = –2 Since n is number of terms, it cannot be negative So, n = –2 is not possible ∴ a = 10 is not possible Taking a = – 8 n = (− 28)/(𝑎 + 4) n = (− 28)/(− 8 + 4) n = (− 28)/( − 4) n = 7 So, n = 7
Ex 5.3
Ex 5.3, 1 (ii)
Ex 5.3, 1 (iii) Important
Ex 5.3, 1 (iv)
Ex 5.3, 2 (i)
Ex 5.3, 2 (ii)
Ex 5.3, 2 (iii) Important
Ex 5.3, 3 (i)
Ex 5.3, 3 (ii)
Ex 5.3, 3 (iii)
Ex 5.3, 3 (iv) Important
Ex 5.3, 3 (v)
Ex 5.3, 3 (vi) Important
Ex 5.3, 3 (vii)
Ex 5.3, 3 (viii) Important You are here
Ex 5.3, 3 (ix)
Ex 5.3, 3 (x)
Ex 5.3, 4
Ex 5.3, 5
Ex 5.3, 6 Important
Ex 5.3, 7
Ex 5.3, 8
Ex 5.3, 9
Ex 5.3, 10 (i)
Ex 5.3, 10 (ii) Important
Ex 5.3, 11 Important
Ex 5.3, 12
Ex 5.3, 13
Ex 5.3, 14 Important
Ex 5.3, 15
Ex 5.3, 16 Important
Ex 5.3, 17
Ex 5.3, 18 Important
Ex 5.3, 19 Important
Ex 5.3, 20 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo