Question 26 (OR 1 st question)
Find the area bounded by the curves y = √x, 2y + 3 = x and x axis






Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Oct. 1, 2019 by Teachoo
Question 26 (OR 1 st question)
Find the area bounded by the curves y = √x, 2y + 3 = x and x axis
Subscribe to our Youtube Channel - https://you.tube/teachoo
Transcript
Question 26 (OR 1st question) Find the area bounded by the curves y = βπ₯, 2y + 3 = x and x axis Given equation of curves y = βπ₯ 2y + 3 = x Here, y = βπ₯ y2 = x So, it is a parabola, with only positive values of y Drawing figure Drawing line 2y + 3 = x on the graph Finding point of intersection of line and curve y = βπ₯ Putting x = 2y + 3 from equation of line y = β(2π¦+3) Squaring both sides y2 = (β(2π¦+3))^2 y2 = 2y + 3 y2 β 2y β 3 = 0 y2 β 3y + y β 3 = 0 y(y β 3) + 1(y β 3) = 0 (y β 3) (y + 1) = 0 So, y = 3, y = β1 Since y cannot be negative y = 3 Since y cannot be negative y = 3 Now, putting y = 3 in lineβs equation 2y + 3 = x 2(3) + 3 = x 6 + 3 = x 9 = x x = 9 So, point is (9, 3) Now, letβs find the area Area required Area required = Area OAC β Area ABC Area OAC Area OAC = β«1_0^9βγπ¦ ππ₯γ y β Equation of curve y = βπ₯ Therefore, Area OAC = β«1_0^9βγβπ₯ ππ₯γ = β«1_0^9βγπ₯^(1/2) ππ₯γ = [π₯^(3/2)/(3/2)]_0^9 = 2/3 [9^(3/2)β0^(3/2) ] = 2/3 Γ 9^(3/2) = 2/3 Γ 3^((2 Γ 3/2) ) = 2/3 Γ 3^3 = 2 Γ 32 = 18 Area ABC Area ABC = β«1_3^9βγπ¦ ππ₯γ y β Equation of line 2y + 3 = x 2y = x β 3 y = π₯/2 β 3/2 Area ABC = β«1_3^9βγ(π₯/2β3/2) ππ₯γ = β«1_3^9βγπ₯/2 ππ₯γ β β«1_3^9βγ3/2 ππ₯γ = [π₯^2/(2 Γ 2)]_3^9 β 3/2 [π₯]_3^9 = [π₯^2/4]_3^9 β 3/2 [π₯]_3^9 = [9^2/4β3^2/4] β 3/2 [9β3] = [(81 β 9)/4] β 3/2 [6] = 18 β 9 = 9 Therefore, Area required = Area OAC β Area ABC = 18 β 9 = 9 square units
CBSE Class 12 Sample Paper for 2019 Boards
Question 1
Question 2
Question 3
Question 4 (Or 1st)
Question 4 (Or 2nd)
Question 5
Question 6
Question 7
Question 8 (Or 1st)
Question 8 (Or 2nd)
Question 9
Question 10 (Or 1st)
Question 10 (Or 2nd)
Question 11
Question 12 (Or 1st)
Question 12 (Or 2nd)
Question 13 (Or 1st)
Question 13 (Or 2nd)
Question 14
Question 15
Question 16 (Or 1st)
Question 16 (Or 2nd)
Question 17
Question 18
Question 19
Question 20
Question 21 (Or 1st)
Question 21 (Or 2nd)
Question 22
Question 23
Question 24 (Or 1st)
Question 24 (Or 2nd)
Question 25
Question 26 (Or 1st) You are here
Question 26 (Or 2nd)
Question 27 (Or 1st)
Question 27 (Or 2nd)
Question 28
Question 29
About the Author