Question 21 (OR 2 nd question)

Find the general solution of the differential equation:

  dx/dy = (y tan⁑y  - x tan⁑y  - xy) / (y tan⁑y)

Slide89.JPG

Slide90.JPG
Slide91.JPG Slide92.JPG

  1. Class 12
  2. Sample Papers, Previous Year Papers and Other Questions
Ask Download

Transcript

Question 21 (OR 2nd question) Find the general solution of the differential equation: 𝑑π‘₯/𝑑𝑦=(𝑦 tan⁑𝑦 βˆ’ π‘₯ tan⁑𝑦 βˆ’ π‘₯𝑦)/(𝑦 tan⁑𝑦 ) 𝑑π‘₯/𝑑𝑦=(𝑦 tan⁑𝑦 βˆ’ π‘₯ tan⁑𝑦 βˆ’ π‘₯𝑦)/(𝑦 tan⁑𝑦 ) 𝑑π‘₯/𝑑𝑦=(𝑦 tan⁑𝑦)/(𝑦 tan⁑𝑦 )βˆ’(π‘₯ tan⁑𝑦 )/(𝑦 tan⁑𝑦 )βˆ’π‘₯𝑦/(𝑦 tan⁑𝑦 ) 𝑑π‘₯/𝑑𝑦=1βˆ’π‘₯/π‘¦βˆ’π‘₯/tan⁑𝑦 𝑑π‘₯/𝑑𝑦+π‘₯/𝑦+π‘₯/tan⁑𝑦 =1 𝑑π‘₯/𝑑𝑦+π‘₯(1/𝑦+1/tan⁑𝑦 )=1 Differential equation is of the form 𝑑π‘₯/𝑑𝑦 + P1 x = Q1 where P1 = 1/𝑦+1/tan⁑𝑦 & Q1 = 1 Now, IF = 𝑒^∫1▒〖𝑝_1 𝑑𝑦〗 IF = e^∫1β–’γ€–(1/𝑦 + 1/tan⁑𝑦 )𝑑𝑦" " γ€— IF = e^(∫1β–’γ€–1/𝑦 𝑑𝑦〗 +∫1β–’γ€–1/tan⁑𝑦 𝑑𝑦〗) IF = e^(∫1β–’γ€–1/𝑦 𝑑𝑦〗 +∫1β–’γ€–cot⁑𝑦 𝑑𝑦〗) IF = e^(log⁑𝑦 + log⁑sin⁑𝑦 ) IF = e^log⁑〖𝑦 sin⁑𝑦 γ€— IF = y sin y (As ∫1β–’cot⁑π‘₯ 𝑑π‘₯=log⁑sin⁑π‘₯ ) (As log a + log b = log ab) (As log a + log b = log ab) We know that ∫1▒〖𝑓(𝑦) 𝑔⁑(𝑦) γ€— 𝑑𝑦=𝑓(𝑦) ∫1▒𝑔(𝑦) π‘‘π‘¦βˆ’βˆ«1β–’(𝑓^β€² π‘¦βˆ«1▒𝑔(𝑦) 𝑑𝑦) 𝑑𝑦 Putting f(y) = y and g(y) = sin y xy sin y =𝑦" " ∫1β–’sin⁑𝑦 π‘‘π‘¦βˆ’βˆ«1β–’(𝑑(𝑦)/𝑑𝑦 ∫1β–’γ€–sin⁑𝑦 𝑑𝑦〗) 𝑑𝑦 xy sin y =βˆ’π‘¦ cos⁑𝑦 βˆ’ ∫1β–’γ€–βˆ’cos⁑𝑦 𝑑𝑦〗 xy sin y =βˆ’π‘¦ cos⁑𝑦+ ∫1β–’γ€–cos⁑𝑦 𝑑𝑦〗 xy sin y =βˆ’π‘¦ cos⁑𝑦+sin⁑𝑦+𝐢 xy sin y =sinβ‘π‘¦βˆ’π‘¦ cos⁑𝑦+𝐢 x = (π’”π’Šπ’β‘π’š βˆ’ π’š π’„π’π’”β‘π’š + π‘ͺ" " )/(π’š π¬π’π§β‘π’š )

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.