Question 24 (OR 1 st question)
If A = [3 1 2 3 2 -3 2 0 -1], find A ^{ –1 }
Hence, solve the system of equations:
3x + 3y + 2z = 1
x + 2y = 4
2x – 3y – z = 5
Last updated at Oct. 1, 2019 by Teachoo
Question 24 (OR 1 st question)
If A = [3 1 2 3 2 -3 2 0 -1], find A ^{ –1 }
Hence, solve the system of equations:
3x + 3y + 2z = 1
x + 2y = 4
2x – 3y – z = 5
Transcript
Question 24 (OR 1st question) If A = [■8(3&1&2@3&2&−3@2&0&−1)], find A–1 Hence, solve the system of equations: 3x + 3y + 2z = 1 x + 2y = 4 2x – 3y – z = 5 For our equation [■8(3&3&2@1&2&0@2&−3&−1)][■8(𝑥@𝑦@𝑧)] = [■8(1@4@5)] i.e. (𝐴^𝑇)X = B X = 〖(𝐴^𝑇)〗^(−1) 𝐵 X = 〖(𝐴^(−1))〗^𝑇 𝐵 (Because 〖(𝐴^𝑇)〗^(−1) = 〖(𝐴^𝑇)〗^(−1)) Here, A = [■8(3&1&2@3&2&−3@2&0&−1)] , X = [■8(𝑥@𝑦@𝑧)] & B = [■8(1@4@5)] Finding A–1 We know that A-1 = 1/(|A|) adj (A) Calculating |A|= |■8(3&1&2@3&2&−3@2&0&−1)| = 3(−2 + 0) − 1 (–3 + 6) + 2 (0 – 4) = –6 – 3 – 8 = −17 Since |A|≠ 0 ∴ The system of equation is consistent & has a unique solutions Now finding adj (A) adj A = [■8(A11&A12&A13@A21&A22&A23@A31&A32&A33)]^′ = [■8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] A = [■8(3&1&2@3&2&−3@2&0&−1)] 𝐴11 = −2 + 0 = –2 𝐴12 = −[−3−(−6)] = − (−3+ 6) = −3 𝐴13 = 0 − 4 = – 4 𝐴21 = –[−1−0] = 1 𝐴22 = −3 – 4 = –7 𝐴23 = –[0−2] = 2 𝐴31 = −3−4= –7 𝐴32 = –[−9−6] = 15 𝐴33 = 6−3 = 3 Thus adj A = [■8(−2&1&−7@−3&−7&15@−4&2&3)] & |A| = –17 Now, A-1 = 1/(|A|) adj A A-1 = 1/(−17) [■8(−2&1&−7@−3&−7&15@−4&2&3)] = 1/17 [■8(2&−1&7@3&7&−15@4&−2&−3)] Now, X = 〖(𝐴^(−1))〗^𝑇 𝐵 [■8(𝑥@𝑦@𝑧)] = 1/17 [■8(2&−1&7@3&7&−15@4&−2&−3)]^′ [■8(1@4@5)] [■8(𝑥@𝑦@𝑧)] = 1/17 [■8(2&3&4@−1&7&−2@7&−15&−3)][■8(1@4@5)] " " [■8(𝑥@𝑦@𝑧)]" =" 1/17 [█(2(1)+3(4)+4(5)@−1(1)+7(4)+(−2)(5)@7(1)+(−15)(4)+(−3)(5))] " " [■8(𝑥@𝑦@𝑧)]" =" 1/17 [■8(2+12+20@−1+28−10@7−60−15)] " " [■8(𝑥@𝑦@𝑧)]" =" 1/17 [■8(34@17@−68)] " " [■8(𝑥@𝑦@𝑧)]" =" [■8(2@1@−4)] "∴ x = 2, y = 1 and z = "–4
CBSE Class 12 Sample Paper for 2019 Boards
Question 1
Question 2
Question 3
Question 4 (Or 1st)
Question 4 (Or 2nd)
Question 5
Question 6
Question 7
Question 8 (Or 1st)
Question 8 (Or 2nd)
Question 9
Question 10 (Or 1st)
Question 10 (Or 2nd)
Question 11
Question 12 (Or 1st)
Question 12 (Or 2nd)
Question 13 (Or 1st)
Question 13 (Or 2nd)
Question 14
Question 15
Question 16 (Or 1st)
Question 16 (Or 2nd)
Question 17
Question 18
Question 19
Question 20
Question 21 (Or 1st)
Question 21 (Or 2nd)
Question 22
Question 23
Question 24 (Or 1st) You are here
Question 24 (Or 2nd)
Question 25
Question 26 (Or 1st)
Question 26 (Or 2nd)
Question 27 (Or 1st)
Question 27 (Or 2nd)
Question 28
Question 29
CBSE Class 12 Sample Paper for 2019 Boards
About the Author