Check sibling questions

Question 24 (OR 2 nd question)

Find the inverse of the following matrix using elementary transformations

[2 -1 3 -5 3 1 -3 2 3]

Find inverse of matrix using elementary transformation - Teachoo

Question 24 (Or 2nd) - CBSE Class 12 Sample Paper for 2019 Boards - Part 2
Question 24 (Or 2nd) - CBSE Class 12 Sample Paper for 2019 Boards - Part 3 Question 24 (Or 2nd) - CBSE Class 12 Sample Paper for 2019 Boards - Part 4 Question 24 (Or 2nd) - CBSE Class 12 Sample Paper for 2019 Boards - Part 5 Question 24 (Or 2nd) - CBSE Class 12 Sample Paper for 2019 Boards - Part 6

This video is only available for Teachoo black users

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Question 24 (OR 2nd question) Find the inverse of the following matrix using elementary transformations [■8(2&−1&[email protected]−5&3&[email protected]−3&2&3)] Let A = [■8(2&−1&[email protected]−5&3&[email protected]−3&2&3)] We know that A = IA [■8(2&−1&[email protected]−5&3&[email protected]−3&2&3)]= [■8(1&0&[email protected]&1&[email protected]&0&1)] A R1 → R1 + 𝑹_𝟐/𝟓 [■8(1&(−2)/5&16/[email protected]−5&3&[email protected]−3&2&3)]= [■8(1&1/5&[email protected]&1&[email protected]&0&1)] A R2 → R2 + 5R1 [■8(1&(−2)/5&16/[email protected]−5+5(1)&3+5((−2)/5)&1+5(16/5)@−3&2&3)]= [■8(1&1/5&[email protected]+5(1)&1+5(1/5)&0+5(0)@0&0&1)] A [■8(1&(−2)/5&16/[email protected]&1&[email protected]−3&2&3)]= [■8(1&1/5&[email protected]&2&[email protected]&0&1)] A R3 → R3 + 3R1 [■8(1&(−2)/5&16/[email protected]&1&[email protected]−3+3(1)&2+3(−2/5)&3+3(16/5) )]= [■8(1&1/5&[email protected]&2&[email protected]+3(1)&0+3(1/5)&1+3(0))] A [■8(1&(−2)/5&16/[email protected]&1&[email protected]&4/5&63/5)]= [■8(1&1/5&[email protected]&2&[email protected]&3/5&1)] A R1 → R1 + 𝟐/𝟓R2 [■8(1+2/5(0)&(−2)/5+2/5(1)&16/5+2/5(17)@0&1&[email protected]&4/5&63/5)]= [■8(1+2/5(5)&1/5+2/5(2)&0+2/5(0)@5&2&[email protected]&3/5&1)] A [■8(1&0&[email protected]&1&[email protected]&4/5&63/5)]= [■8(3&1&[email protected]&2&[email protected]&3/5&1)] A R3 → R3 – 𝟒/𝟓R2 [■8(1&0&[email protected]&1&[email protected]−4/5(0)&4/5−4/5(1)&63/5−4/5(17))]= [■8(3&1&[email protected]&2&[email protected]−4/5(5)&3/5−4/5(2)&1−4/5(0))] A [■8(1&0&[email protected]&1&[email protected]&0&−1)]= [■8(3&1&[email protected]&2&[email protected]−1&−1&1)] A R3 → R3 × –1 [■8(1&0&[email protected]&1&[email protected]&0&1)]= [■8(3&1&[email protected]&2&[email protected]&1&−1)] A R1 → R1 – 10R3 [■8(1−10(0)&0−10(0)&10−10(1)@0&1&[email protected]&0&1)]= [■8(3−10(1)&1−10(1)&0−10(−1)@5&2&[email protected]&1&−1)] A [■8(1&0&[email protected]&1&[email protected]&0&1)]= [■8(−7&−9&[email protected]&2&[email protected]&1&−1)] A R2 → R2 – 17R3 [■8(1&0&[email protected]−17(0)&1−17(0)&17−17(1)@0&0&1)]= [■8(−7&−9&[email protected]−17(1)&2−17(1)&0−17(−1)@1&1&−1)] A [■8(1&0&[email protected]&1&[email protected]&0&1)] = [■8(−7&−9&[email protected]−12&−15&[email protected]&1&−1)] A "I"= [■8(−7&−9&[email protected]−12&−15&[email protected]&1&−1)] A This is similar to I = A-1A Thus, A-1 = [■8(−7&−9&[email protected]−12&−15&[email protected]&1&−1)]

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.