Question 20

Evaluate: Definite Integration -1 → 1  ∫ (x + |x| + 1) / (x + 2|x| + 1)

Slide79.JPG

Slide80.JPG
Slide81.JPG Slide82.JPG Slide83.JPG

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

Transcript

Question 20 Evaluate: ∫1_(βˆ’1)^1β–’(π‘₯+|π‘₯|+1)/(π‘₯^2+2|π‘₯|+1) We know that |π‘₯|={β–ˆ(βˆ’&π‘₯, π‘₯<0@&π‘₯, π‘₯β‰₯0)─ So, for –1 to 0, |x| = –x and for 0 to 1 |x| = x So, our integral becomes ∫1_(βˆ’1)^1β–’(π‘₯+|π‘₯|+1)/(π‘₯^2+2|π‘₯|+1) ∫1_(βˆ’1)^0β–’(π‘₯+|π‘₯|+1)/(π‘₯^2+2|π‘₯|+1) ∫1_0^1β–’(π‘₯+|π‘₯|+1)/(π‘₯^2+2|π‘₯|+1) ∫1_(βˆ’1)^0β–’(π‘₯βˆ’π‘₯+1)/(π‘₯^2βˆ’2π‘₯+1) ∫1_0^1β–’(π‘₯+π‘₯+1)/(π‘₯^2+2π‘₯+1) ∫1_(βˆ’1)^0β–’1/(π‘₯^2βˆ’2π‘₯+1) ∫1_0^1β–’(2π‘₯+1)/(π‘₯^2+2π‘₯+1) ∫1_(βˆ’1)^0β–’1/(π‘₯βˆ’1)^2 ∫1_0^1β–’(2π‘₯+1)/(π‘₯+1)^2 ∫1_(βˆ’1)^0β–’1/(π‘₯βˆ’1)^2 ∫1_0^1β–’(2π‘₯+1+1βˆ’1)/(π‘₯+1)^2 ∫1_(βˆ’1)^0β–’1/(π‘₯βˆ’1)^2 ∫1_0^1β–’(2π‘₯+2βˆ’1)/(π‘₯+1)^2 ∫1_(βˆ’1)^0β–’1/(π‘₯βˆ’1)^2 ∫1_0^1β–’(2(π‘₯+1)βˆ’1)/(π‘₯+1)^2 ∫1_(βˆ’1)^0β–’1/(π‘₯βˆ’1)^2 ∫1_0^1β–’(2(π‘₯+1) )/(π‘₯+1)^2 ∫1_0^1β–’1/(π‘₯+1)^2 ∫1_(βˆ’1)^0β–’1/(π‘₯βˆ’1)^2 ∫1_0^1β–’(2 )/((π‘₯+1) ) ∫1_0^1β–’1/(π‘₯+1)^2 ∫1_(βˆ’1)^0β–’1/(π‘₯βˆ’1)^2 2 ∫1_0^1β–’"dx " /((π‘₯+1) ) ∫1_0^1β–’1/(π‘₯+1)^2 [(π‘₯βˆ’1)^(βˆ’1)/(βˆ’1)]_(βˆ’1)^0 2[ln⁑〖|π‘₯+1|γ€— ]_0^1 [(π‘₯+1)^(βˆ’1)/(βˆ’1)]_0^1 [(βˆ’1)/((π‘₯βˆ’1))]_(βˆ’1)^0 "2" [ln⁑〖|π‘₯+1|γ€— ]_0^1 [(βˆ’1)/((π‘₯+1))]_0^1 [(βˆ’1)/((0βˆ’1))βˆ’(βˆ’1)/((βˆ’1βˆ’1))] 2[ln⁑〖|2|γ€—βˆ’log⁑〖|1|γ€— ] [(βˆ’1)/((1+1))βˆ’(βˆ’1)/((0+1))] [1βˆ’1/2] 2[ln⁑〖|2|γ€—βˆ’0] [βˆ’1/2+1] 1/2+2 ln⁑2βˆ’1/2 2 ln⁑2

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.