Ex 7.2, 31 - Chapter 7 Class 12 Integrals (Term 2)
Last updated at July 11, 2018 by Teachoo
Last updated at July 11, 2018 by Teachoo
Transcript
Ex7.2, 31 sin𝑥 1+ cos𝑥2 Step 1: Let 1+ cos𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 0−sin 𝑥= 𝑑𝑡𝑑𝑥 − sin 𝑥= 𝑑𝑡𝑑𝑥 𝑑𝑥 = 𝑑𝑡− sin 𝑥 Step 2: Integrating the function sin𝑥 1+ cos𝑥2 . 𝑑𝑥 putting 1+ 𝑐𝑜𝑠𝑥=𝑡 & 𝑑𝑥= 𝑑𝑡− sin 𝑥 = sin𝑥 𝑡2 . 𝑑𝑡− sin 𝑥 = 1− 𝑡2 = −1 1 𝑡2 . 𝑑𝑡 = −1 𝑡−2 +1−2 +1 +𝐶 = −1 𝑡−1−1 +𝐶 = 𝑡−1 +𝐶 = 1𝑡 +𝐶 = 𝟏𝟏+ 𝒄𝒐𝒔𝒙 +𝑪
Integration by substitution - Trignometric - Normal
Example 5 (i)
Ex 7.2, 22 Important
Misc 15
Example 37
Ex 7.2, 27
Ex 7.2, 31 You are here
Ex 7.2, 30
Ex 7.2, 26 Important
Ex 7.2, 24
Example 6 (i)
Ex 7.2, 29 Important
Ex 7.2, 21
Ex 7.2, 34 Important
Ex 7.2, 39 (MCQ) Important
Ex 7.2, 25
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Misc 7 Important
Integration by substitution - Trignometric - Normal
About the Author