Chapter 7 Class 12 Integrals
Concept wise

Question 1 - Integrate x dx from a to b by limit as a sum - Area as a sum

part 2 - Question 1 - Area as a sum - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Question 1 - Area as a sum - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Question 1 - Area as a sum - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Question 1 - Area as a sum - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Question 1 ∫1_π‘Ž^𝑏▒〖π‘₯ 𝑑π‘₯γ€— ∫1_π‘Ž^𝑏▒〖π‘₯ 𝑑π‘₯γ€— Putting 𝒂 =π‘Ž 𝒃 =𝑏 𝒉=(𝑏 βˆ’ π‘Ž)/𝑛 𝒇(𝒙)=π‘₯ We know that ∫1_π‘Ž^𝑏▒〖𝑓(π‘₯) 𝑑π‘₯γ€— =(π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) 1/𝑛 (𝑓(π‘Ž)+𝑓(π‘Ž+β„Ž)+𝑓(π‘Ž+2β„Ž)…+𝑓(π‘Ž+(π‘›βˆ’1)β„Ž)) Hence we can write ∫1_π‘Ž^𝑏▒〖π‘₯ 𝑑π‘₯γ€— =(π‘βˆ’π‘Ž) lim┬(nβ†’βˆž) 1/𝑛 (𝑓(π‘Ž)+𝑓(π‘Ž+β„Ž)+𝑓(π‘Ž+2β„Ž)+… +𝑓(π‘Ž+(π‘›βˆ’1)β„Ž) Here, 𝒇(𝒙)=π‘₯ 𝒇(𝒂)=π‘Ž 𝒇(𝒂+𝒉)=π‘Ž+β„Ž 𝒇 (𝒂+πŸπ’‰)=π‘Ž+2β„Ž … 𝒇(𝒂+(π’βˆ’πŸ)𝒉)=π‘Ž+(π‘›βˆ’1)β„Ž Hence, our equation becomes ∴ ∫_𝟎^𝒂▒𝒙 𝒅𝒙 = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) 1/𝑛 (𝑓(π‘Ž)+𝑓(π‘Ž+β„Ž)+𝑓(π‘Ž+2β„Ž)…+𝑓(π‘Ž+(π‘›βˆ’1)β„Ž)) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) 1/𝑛 (π‘Ž+(π‘Ž+β„Ž)+(π‘Ž+2β„Ž)+ …+(π‘Ž+(π‘›βˆ’1)β„Ž)) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) 1/𝑛 ( 𝒂+𝒂+ …+𝒂 +β„Ž+2β„Ž+ ……+(π‘›βˆ’1)β„Ž) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) 1/𝑛 ( 𝒏𝒂 +β„Ž+2β„Ž+ ……+(π‘›βˆ’1)β„Ž) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) 1/𝑛 ( π‘›π‘Ž+β„Ž (𝟏+𝟐+ ………+(π’βˆ’πŸ))) 𝒏 π’•π’Šπ’Žπ’†π’” We know that 1+2+3+ ……+𝑛= (𝑛 (𝑛 + 1))/2 1+2+3+ ……+π‘›βˆ’1= ((𝑛 βˆ’ 1) (𝑛 βˆ’ 1 + 1))/2 = (𝒏 (𝒏 βˆ’ 𝟏) )/𝟐 = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) 1/𝑛 ( π‘›π‘Ž+(𝒉 . 𝒏(𝒏 βˆ’ 𝟏))/𝟐) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) ( π‘›π‘Ž/𝒏+𝑛(𝑛 βˆ’ 1)β„Ž/2𝒏) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) ( π‘Ž+(𝑛 βˆ’ 1)𝒉/2) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) ( π‘Ž+(𝑛 βˆ’ 1)(𝒃 βˆ’π’‚)/(2 . 𝒏)) = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) ( π‘Ž+(𝒏/𝒏 βˆ’ 𝟏/𝒏) ((𝑏 βˆ’ π‘Ž) )/2) [π‘ˆπ‘ π‘–π‘›π‘” β„Ž=(𝑏 βˆ’ π‘Ž)/𝑛] = (π‘βˆ’π‘Ž) (π‘™π‘–π‘š)┬(π‘›β†’βˆž) ( π‘Ž+(πŸβˆ’ 𝟏/𝒏) ((𝑏 βˆ’ π‘Ž) )/2) = (π‘βˆ’π‘Ž)( π‘Ž+(1βˆ’ 𝟏/∞) ((𝑏 βˆ’ π‘Ž) )/2) = (π‘βˆ’π‘Ž)( π‘Ž+(1βˆ’πŸŽ) ((𝑏 βˆ’ π‘Ž) )/2) = (π‘βˆ’π‘Ž)( π‘Ž+ (𝑏 βˆ’ π‘Ž )/2) = (π‘βˆ’π‘Ž)((2π‘Ž + 𝑏 βˆ’ π‘Ž )/2) = (𝑏 βˆ’ π‘Ž)(𝑏 + π‘Ž)/2 = (𝒃^𝟐 βˆ’ 𝒂^𝟐)/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo