

Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 9.6
Ex 9.6, 2
Ex 9.6, 3 Important
Ex 9.6, 4
Ex 9.6, 5 Important
Ex 9.6, 6
Ex 9.6, 7 Important
Ex 9.6, 8 Important
Ex 9.6, 9
Ex 9.6, 10
Ex 9.6, 11
Ex 9.6, 12 Important
Ex 9.6, 13
Ex 9.6, 14 Important
Ex 9.6, 15
Ex 9.6, 16 Important
Ex 9.6, 17 Important
Ex 9.6, 18 (MCQ)
Ex 9.6, 19 (MCQ) Important You are here
Last updated at March 16, 2023 by Teachoo
Ex 9.6, 19 The integrating Factor of the differential equation (1βπ¦^2 ) ππ₯/ππ¦+π¦π₯=ππ¦ (β1<π¦<1) is (A) 1/(π¦^2β1) (B) 1/β(π¦^2β1) (C) 1/(1βπ¦^2 ) (D) 1/β(1βπ¦^2 ) (1βπ¦^2 ) ππ₯/ππ¦+π¦π₯=ππ¦ Dividing both sides by 1 β y2 ππ₯/ππ¦ + π¦π₯/(1βπ¦^2 ) = ππ¦/(1βπ¦^2 ) Differential equation is of the form π π/π π + P1x = Q1 where P1 = π¦/(1 β π¦^2 ) & Q1 = ππ¦/(1 β π¦^2 ) IF = π^β«1βπ1ππ¦ Finding β«1βγπ·π π πγ β«1βγπ1 ππ¦=γ β«1βγπ¦/(1βπ¦^2 ) ππ¦ γ Putting 1 β y2 = t β2y dy = dt y dy = (β1)/2 dt β΄ Our equation becomes β«1βγπ1 ππ¦= (β1)/2 γ β«1βγππ‘/π‘ γ β«1βγπ1 ππ¦= (β1)/2 γ logβ‘π‘ Putting back value of t β«1βγπ1 ππ¦= (β1)/2 γ logβ‘(1βπ¦^2) β«1βγπ1 ππ¦=γ γlogβ‘(1βπ¦^2 )γ^((β1)/2) β«1βγπ1 ππ¦= γ log 1/β(1 β π¦^2 ) Thus, IF = π^β«1βπ1ππ₯ IF = π^(πππ 1/β(1 β π¦^2 )) IF = π/β(π β π^π ) So, the correct answer is (d)