


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 9.5
Ex 9.5, 2
Ex 9.5, 3 Important
Ex 9.5, 4
Ex 9.5, 5 Important
Ex 9.5, 6
Ex 9.5, 7 Important
Ex 9.5, 8 Important
Ex 9.5, 9
Ex 9.5, 10
Ex 9.5, 11
Ex 9.5, 12 Important
Ex 9.5, 13
Ex 9.5, 14 Important You are here
Ex 9.5, 15
Ex 9.5, 16 Important
Ex 9.5, 17 Important
Ex 9.5, 18 (MCQ)
Ex 9.5, 19 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 9.5, 14 For each of the differential equations given in Exercises 13 to 15 , find a particular solution satisfy the given condition : 1+ 2 +2 = 1 1+ 2 ; =0 when =1 (1 + x2) + 2xy = 1 1 + 2 Divide both sides by (1+ 2) + 2 1 + 2 = 1 1 + 2 .(1 + 2) + 2 1 + 2 y = 1 1 + 2 Comparing with + Py = Q P = 2 1 + 2 & Q = 1 1 + 2 2 Find Integrating factor IF = IF = 2 1 + 2 Let 1+ 2 = t Diff . w.r.t. x 2x = t dx = 2 IF = e 2 2 IF = e IF = e IF = t IF = 1 + x2 Step 4 : Solution of the deferential equation y I.F = . Putting values y (1 + x2) = 1 1 + 2 2 (1 + x2).dx y (1 + x2) = 1 1 + 2 dx y (1 + x2) = tan 1 + Given that y = 0 when x = 1 Putting y = 0 and x = 1 in (1) y (1 + x2) = tan 1 x + c 0(1 + 12) = tan 1 (1)+ c 0 = 4 + C C = 4 Putting value of C in (2) y (1 + x2) = tan-1 x + c y (1 + x2) = tan-1 x