Ex 9.5, 5 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Ex 9.5
Ex 9.5, 2
Ex 9.5, 3 Important
Ex 9.5, 4
Ex 9.5, 5 Important You are here
Ex 9.5, 6
Ex 9.5, 7 Important
Ex 9.5, 8 Important
Ex 9.5, 9
Ex 9.5, 10
Ex 9.5, 11
Ex 9.5, 12 Important
Ex 9.5, 13
Ex 9.5, 14 Important
Ex 9.5, 15
Ex 9.5, 16 Important
Ex 9.5, 17 Important
Ex 9.5, 18 (MCQ)
Ex 9.5, 19 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 9.5, 5 For each of the differential equation given in Exercises 1 to 12, find the general solution : cos^2β‘γπ₯ ππ¦/ππ₯+π¦=π‘πππ₯(0β€π₯<π/2)γ Step 1: Put in form ππ¦/ππ₯ + Py = Q cos2x.ππ¦/ππ₯ + y = tan x Dividing by cos2x, ππ¦/ππ₯ + y.1/πππ 2π₯ = tanβ‘π₯/πππ 2π₯ π π/π π + (sec2x)y = sec2x. tan x Step 2: Find P and Q Comparing (1) with ππ¦/ππ₯ + Py = Q P = sec2 x and Q = sec2 x. tan x Step 3 : Find integrating factor, I.F I.F = e^β«1βπππ₯ I.F = e^(β«1βγπ ππ2π₯.ππ₯γ " " ) I.F. = etan x Step 4 : Solution of the equation y Γ I.F. = β«1βγπΓπΌ.πΉ.ππ₯γ+π Putting values, y.etan x = β«1βγπππππ.πππβ‘γπ.γ γ "etan x.dx + C" Let I = β«1βγπππππ.πππβ‘γπ.γ γ "etan x.dx" Putting t = tan x" " β΄ π ππ2π₯.dx = dt Putting values of t & dt in equation β΄ I = β«1βtanβ‘γπ₯."etan x" .(π ππ2π₯.ππ₯)γ I =β«1βγπ.π^π.π πγ I = t β«1βγπ^π‘ ππ‘γ β β«1β[ππ‘/ππ‘ β«1βγπ^π‘ ππ‘γ] ππ‘ I = t."et" β β«1βγ"et" ππ‘γ . Using by parts with β«1βγπ(π‘) π(π‘) ππ‘=π(π‘) β«1βγπ(π‘) ππ₯ ββ«1βγ[π^β² (π‘) β«1βγπ(π‘) ππ₯] ππ₯γγγγ Take f (t) = t & g(t) = π^π‘ I = π"et" β "et" Putting t = tan x I = tan x. etan x β etan x I = etan x ( tan x β 1) Substituting value of I in (2), y etan x = etan x (tan x β 1) + C Dividing by etan x, y = tan x β 1 + C. eβtan x