


Ex 9.6
Ex 9.6, 2
Ex 9.6, 3 Important
Ex 9.6, 4
Ex 9.6, 5 Important
Ex 9.6, 6
Ex 9.6, 7 Important
Ex 9.6, 8 Important
Ex 9.6, 9
Ex 9.6, 10 Deleted for CBSE Board 2022 Exams You are here
Ex 9.6, 11 Deleted for CBSE Board 2022 Exams
Ex 9.6, 12 Important Deleted for CBSE Board 2022 Exams
Ex 9.6, 13
Ex 9.6, 14 Important
Ex 9.6, 15
Ex 9.6, 16 Important
Ex 9.6, 17 Important
Ex 9.6, 18 (MCQ)
Ex 9.6, 19 (MCQ) Important Deleted for CBSE Board 2022 Exams
Last updated at May 29, 2018 by Teachoo
Ex 9.6, 10 For each of the differential equation given in Exercises 1 to 12, find the general solution : ( + ) / =1 Step 1: Put in form / + Py = Q or / + P1x = Q1 (x + y) / = 1 Dividing by (x + y), / = 1/(( + )) / = ( + ) / x = / + ( 1) x = Step 2: Find P1 and Q1 Comparing (1) with / + P1x = Q1 P1 = 1 and Q1 = y Step 3: Find Integrating factor, I.F. I.F. = ^ 1 _1 = e^ 1 ( 1) = e y So, I.F. = e y Step 4 : Solution of the equation x I.F. = 1 1 . . + Putting values, x e y = 1 ^( ). + Let I = 1 . ^( ) = y 1 ^( ) 1 [ / 1 ^( ) ] dy = y ^( )/( 1) 1 1. ^( )/( 1) dy. = . ^( ) + 1 ^( ) = . ^( ) + ^( )/( 1) = . ^( ) ^( ) Putting value of I in (2) x e y = 1 ^( ). + x e y = ^( ) ^( )+ Dividing by ^( ) x = y 1 + Cey x + y + 1 = Cey