







Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9
Example 10 Important
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Deleted for CBSE Board 2024 Exams
Question 15 Important Deleted for CBSE Board 2024 Exams
Question 16 Deleted for CBSE Board 2024 Exams You are here
Question 17 Important Deleted for CBSE Board 2024 Exams
Question 18 Important Deleted for CBSE Board 2024 Exams
Question 19 Important Deleted for CBSE Board 2024 Exams
Question 20 Important Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Question 16 A line makes angles 𝛼, 𝛽 , 𝛾 and 𝛿 with the diagonals of a cube, prove that cos2 𝛼 + cos2𝛽 + cos2 𝛼 + cos2𝛾 = 43 Let the side of a cube be ‘a’ Vertices of the cube are ABCDEFOG as shown. Consider a line OP , P having the coordinate (x1, y1, z1) Let OP make angles 𝛼, 𝛽 , 𝛾 and 𝛿 with diagonals OE, AF, CD and BG respectively. Finding lines OE, AF, CD and BG first. Now, Angle between 𝑂𝑃 and 𝑂𝐸 is given by cos 𝛼 = 𝑂𝑃. 𝑂𝐸 𝑂𝑃 𝑂𝐸 𝑂𝑃. 𝑂𝐸 = (x1 𝑖 + y1 𝑗 + z1 𝑘) . (𝑎 𝑖 + 𝑎 𝑗 + 𝑎 𝑘) = ( 𝑥1× 𝑎) + (𝑦1 × 𝑎) + (𝑧1 × 𝑎) = 𝑎x1 + ay1 + az1 Magnitude of 𝑂𝑃 = 𝑥12+ 𝑦12+ 𝑧12 𝑂𝑃 = 𝑥12+ 𝑦12+ 𝑧12 Magnitude of 𝑂𝐸 = 𝑎2+𝑎2+𝑎2 𝑂𝐸 = 3𝑎2 = 3𝑎 So, cos α = 𝑎𝑥1 + 𝑎𝑦1 + 𝑎𝑧1 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = 𝑎(𝑥1 + 𝑦1 + 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = (𝒙𝟏+𝒚𝟏 + 𝒛𝟏) 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Angle between 𝑂𝑃 and 𝐴𝐹 is given by cos 𝛽 = 𝑂𝑃. 𝐴𝐹 𝑂𝑃 𝐴𝐹 𝑂𝑃. 𝐴𝐹 = (x1 𝑖 + y1 𝑗 + z1 𝑘).(−𝑎 𝑖 + 𝑎 𝑗 + 𝑎 𝑘) = (x1× –𝑎) + (y1 × 𝑎) + (z1 × 𝑎) = –𝑎x1 + ay1 + az1 Magnitude of 𝑂𝑃 = 𝑂𝑃 = 𝑥12+ 𝑦12+𝑧12 Magnitude of 𝐴𝐹 = −𝑎2+𝑎2+𝑎2 𝐴𝐹 = 𝑎2+𝑎2+𝑎2 = 3𝑎2 = 3𝑎 So, cos 𝜷 = 𝑎(−𝑥1+ 𝑦1 + 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = −𝒙𝟏+ 𝒚𝟏 + 𝒛𝟏 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Angle between 𝑂𝑃 and 𝐶𝐷 is given by cos 𝛾 = 𝑂𝑃. 𝐶𝐷 𝑂𝑃 𝐶𝐷 𝑂𝑃. 𝐶𝐷 = (x1 𝑖 + y1 𝑗 + z1 𝑘).(𝑎 𝑖 + 𝑎 𝑗 – 𝑎 𝑘) = (x1× 𝑎) + (y1 × 𝑎) + (z1 × –𝑎) = 𝑎x1 + ay1 – az1 Magnitude of 𝑂𝑃 = 𝑂𝑃 = 𝑥12+ 𝑦12+𝑧12 Magnitude of 𝐶𝐷 = 𝑎2+𝑎2+ −𝑎2 𝐶𝐷 = 𝑎2+𝑎2+𝑎2 = 3𝑎2 = 3𝑎 So, cos 𝜸 = 𝑎(𝑥1+ 𝑦1 − 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = 𝒙𝟏+ 𝒚𝟏 − 𝒛𝟏 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Angle between 𝑂𝑃 and 𝐵𝐺 is given by cos 𝛿 = 𝑂𝑃. 𝐵𝐺 𝑂𝑃 𝐵𝐺 𝑂𝑃. 𝐵𝐺 = (x1 𝑖 + y1 𝑗 + z1 𝑘).(𝑎 𝑖 – 𝑎 𝑗 + 𝑎 𝑘) = (x1× 𝑎) + (y1 × –𝑎) + (z1 × 𝑎) = 𝑎x1 – ay1 + az1 Magnitude of 𝑂𝑃 = 𝑂𝑃 = 𝑥12+ 𝑦12+𝑧12 Magnitude of 𝐵𝐺 = 𝑎2+ −𝑎2+𝑎2 𝐵𝐺 = 𝑎2+𝑎2+𝑎2 = 3𝑎2 = 3𝑎 So, cos 𝜹 = 𝑎(𝑥1− 𝑦1 + 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = 𝒙𝟏 − 𝒚𝟏 + 𝒛𝟏 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Now, cos2 𝜶 + cos2𝜷 + cos2 𝜸 + cos2 𝜹 = 𝑥1 + 𝑦1 + 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 + − 𝑥1 + 𝑦1 + 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 + 𝑥1 + 𝑦1 − 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 + 𝑥1 − 𝑦1 + 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 = 𝑥1 + 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) + − 𝑥1 + 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) + 𝑥1 + 𝑦1 − 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) + 𝑥1 − 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) = 𝑥1 + 𝑦1 + 𝑧12 + −𝑥1 + 𝑦1+ 𝑧12 + 𝑥1 + 𝑦1 − 𝑧12 + 𝑥1 − 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) = 𝑥12 + 𝑦12 + 𝑧12 + 2 𝑥1 𝑦1+ 2 𝑥1 𝑧1+ 2 𝑦1 𝑧1 + 𝑥12 + 𝑦12 + 𝑧12 − 2 𝑥1 𝑦1 − 2 𝑥1 𝑧1+ 2 𝑦1 𝑧1+ 𝑥12 + 𝑦12 + 𝑧12+ 2 𝑥1 𝑦1 − 2 𝑥1 𝑧1 − 2 𝑦1 𝑧1+ 𝑥12 + 𝑦12 + 𝑧12 − 2 𝑥1 𝑦1 + 2 𝑥1 𝑧1 − 2 𝑦1 𝑧13( 𝑥12 + 𝑦12 + 𝑧12) = 4 𝑥12 + 4 𝑦12 + 4 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) = 4( 𝑥12 + 𝑦12 + 𝑧12)3( 𝑥12 + 𝑦12 + 𝑧12) = 43 ∴ cos2𝜶 + cos2𝜷 + cos2𝜸 + cos2𝜹 = 𝟒𝟑