

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9
Example 10 Important
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams You are here
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Deleted for CBSE Board 2024 Exams
Question 15 Important Deleted for CBSE Board 2024 Exams
Question 16 Deleted for CBSE Board 2024 Exams
Question 17 Important Deleted for CBSE Board 2024 Exams
Question 18 Important Deleted for CBSE Board 2024 Exams
Question 19 Important Deleted for CBSE Board 2024 Exams
Question 20 Important Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Question 12 Find the angle between the two planes 2x + y 2z = 5 and 3x 6y 2z = 7 using vector method. Angle between two planes . ( 1) = d1 and .( 2) = d2 is given by cos = |(( ) . ( ) )/|( ) ||( ) | | Given, the two planes are 2x + y 2z = 5 Comparing with A1x + B1y + C1z = d1 Direction ratios of normal = 2, 1, 2 ( 1) = 2 + 1 2 Magnitude of ( 1) = (22+12+( 2)2) |( 1) |= (4+1+4) = 9 = 3 3x 6y 2z = 7 Comparing with A2x + B2y + C2z = d2 Direction ratios of normal = 3, 6, 2 ( 2) = 3 6 2 Magnitude of ( 2) = (32+( 6)2+( 2)2) |( 2) |= (9+36+4) = 49 = 7 So, cos = |((2 " " + 1 " " 2 ) . (3 " " 6 " " 2 ))/(3 7)| = |((2 3) + (1 6) + ( 2 2))/21| = |(6 6 + 4)/21| = 4/21 So, cos = 4/21 = cos-1( / ) Therefore, two angle between the two planes is cos-1(4/21)