


Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Feb. 1, 2020 by Teachoo
Transcript
Example 12 Find the distance between the lines π_1 and π_2 given by π β = π Μ + 2π Μ β 4π Μ + π (2π Μ + 3π Μ + 6π Μ ) and π β = 3π Μ + 3π Μ β 5π Μ + ΞΌ (2π Μ + 3π Μ + 6π Μ)Since they are same, they are parallel lines Distance between two parallel lines with vector equations π β = (π_1 ) β + ππ β and π β = (π_2 ) β + ΞΌπ β is |(π β Γ ((π_2 ) β β (π_1 ) β))/|π β | | π β = (π Μ + 2π Μ β 4π Μ) + π (2π Μ + 3π Μ + 6π Μ) Comparing with π β = (π1) β + π π β, (π1) β = 1π Μ + 2π Μ β 4π Μ & π β = 2π Μ + 3π Μ + 6π Μ π β = (3π Μ + 3π Μ β 5π Μ) + π (2π Μ + 3π Μ + 6π Μ) Comparing with π β = (π2) β + ππ β, (π2) β = 3π Μ + 3π Μ β 5π Μ & π β = 2π Μ + 3π Μ + 6π Μ Now, ((ππ) β β (ππ) β) = (3π Μ + 3π Μ β 5π Μ) β (1π Μ + 2π Μ β 4π Μ) = (3 β 1) π Μ + (3 β 2)π Μ + ( β 5 + 4)π Μ = 2π Μ + 1π Μ β 1π Μ Magnitude of π β = β(22 + 32 + 62) |π β | = β(4+9+36) = β49 = 7 Also, π β Γ ((ππ) β β (ππ) β) = |β 8(π Μ&π Μ&π Μ@2&3&6@2&1&β1)| = π Μ [(3Γβ1)β(1Γ6)] β π Μ [(2Γβ1)β(2Γ6)] + π Μ [(2Γ1)β(2Γ3)] = π Μ [β3β6] β π Μ [β2β12] + π Μ [2β6] = π Μ (β9) β π Μ (β14) + π Μ(β4) = βππ Μ + 14π Μ β 4π Μ Now, |π β" Γ (" (ππ) β" β " (ππ) β")" | = β((β9)^2+(14)^2+(β4)^2 ) = β(81+196+16) = βπππ So, distance = |(π β Γ ((π_2 ) β β (π_1 ) β))/|π β | | = |β293/7| = βπππ/π Therefore, the distance between the given two parallel lines is β293/7.
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8
Example, 9 Not in Syllabus - CBSE Exams 2021
Example 10 Not in Syllabus - CBSE Exams 2021
Example 11
Example 12 Important You are here
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18
Example 19 Important
Example 20 Important
Example 21 Important
Example 22 Not in Syllabus - CBSE Exams 2021
Example 23 Important Not in Syllabus - CBSE Exams 2021
Example 24
Example, 25 Important
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Example 30 Important
About the Author