Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Examples

Example 1

Example, 2 Important

Example, 3

Example, 4 Important

Example, 5 Important

Example, 6 Important

Example, 7

Example 8 Important

Example 9

Example 10 Important You are here

Question 1 Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 Deleted for CBSE Board 2024 Exams

Question 5 Deleted for CBSE Board 2024 Exams

Question 6 Important Deleted for CBSE Board 2024 Exams

Question 7 Deleted for CBSE Board 2024 Exams

Question 8 Deleted for CBSE Board 2024 Exams

Question 9 Important Deleted for CBSE Board 2024 Exams

Question 10 Important Deleted for CBSE Board 2024 Exams

Question 11 Important Deleted for CBSE Board 2024 Exams

Question 12 Deleted for CBSE Board 2024 Exams

Question 13 Important Deleted for CBSE Board 2024 Exams

Question 14 Deleted for CBSE Board 2024 Exams

Question 15 Important Deleted for CBSE Board 2024 Exams

Question 16 Deleted for CBSE Board 2024 Exams

Question 17 Important Deleted for CBSE Board 2024 Exams

Question 18 Important Deleted for CBSE Board 2024 Exams

Question 19 Important Deleted for CBSE Board 2024 Exams

Question 20 Important Deleted for CBSE Board 2024 Exams

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

Last updated at Aug. 14, 2023 by Teachoo

Example 10 Find the distance between the lines 𝑙_1 and 𝑙_2 given by 𝑟 ⃗ = 𝑖 ̂ + 2𝑗 ̂ – 4𝑘 ̂ + 𝜆 (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂ ) and 𝑟 ⃗ = 3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂ + μ (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂)Distance between two parallel lines with vector equations 𝑟 ⃗ = (𝑎_1 ) ⃗ + 𝜆𝒃 ⃗ and 𝑟 ⃗ = (𝑎_2 ) ⃗ + 𝜇𝒃 ⃗ is |(𝒃 ⃗ × ((𝒂_𝟐 ) ⃗ − (𝒂_𝟏 ) ⃗))/|𝒃 ⃗ | | 𝑟 ⃗ = (𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂) + 𝜆 (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 𝑏 ⃗, (𝑎1) ⃗ = 1𝑖 ̂ + 2𝑗 ̂ – 4𝑘 ̂ & 𝑏 ⃗ = 2𝑖 ̂ + 3𝑗 ̂ + 6𝑘 ̂ 𝑟 ⃗ = (3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂) + 𝜇 (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇𝑏 ⃗, (𝑎2) ⃗ = 3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂ & 𝑏 ⃗ = 2𝑖 ̂ + 3𝑗 ̂ + 6𝑘 ̂ Now, ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗) = (3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂) − (1𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂) = (3 − 1) 𝑖 ̂ + (3 − 2)𝑗 ̂ + ( − 5 + 4)𝑘 ̂ = 2𝒊 ̂ + 1𝒋 ̂ − 1𝒌 ̂ Magnitude of 𝑏 ⃗ = √(22 + 32 + 62) |𝒃 ⃗ | = √(4+9+36) = √49 = 7 Also, 𝒃 ⃗ × ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗) = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@2&3&6@2&1&−1)| = 𝑖 ̂ [(3×−1)−(1×6)] − 𝑗 ̂ [(2×−1)−(2×6)] + 𝑘 ̂ [(2×1)−(2×3)] = 𝑖 ̂ [−3−6] − 𝑗 ̂ [−2−12] + 𝑘 ̂ [2−6] = 𝑖 ̂ (–9) − 𝑗 ̂ (–14) + 𝑘 ̂(−4) = −𝟗𝒊 ̂ + 14𝒋 ̂ − 4𝒌 ̂ Now, |𝒃 ⃗" × (" (𝒂𝟐) ⃗" − " (𝒂𝟏) ⃗")" | = √((−9)^2+(14)^2+(−4)^2 ) = √(81+196+16) = √𝟐𝟗𝟑 So, Distance = |(𝑏 ⃗ × ((𝑎_2 ) ⃗ − (𝑎_1 ) ⃗))/|𝑏 ⃗ | | = |√293/7| = √𝟐𝟗𝟑/𝟕 Therefore, the distance between the given two parallel lines is √293/7.