




Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Feb. 4, 2020 by Teachoo
Transcript
Example 17 (introduction) Find the vector and cartesian equations of the plane which passes through the point (5, 2, – 4) and perpendicular to the line with direction ratios 2, 3, – 1.Vector equation of a plane passing through a point (x1, y1, z1) and perpendicular to a line with direction ratios A, B, C is [𝑟 ⃗ −(𝑥1𝑖 ̂ + 𝑦1𝑗 ̂ + 𝑧1𝑘 ̂)]. (A𝑖 ̂ + B𝑗 ̂ + C𝑘 ̂) = 0 or (𝑟 ⃗ − 𝑎 ⃗).𝑛 ⃗ = 0 ("A" 𝑃) ⃗ is perpendicular to "n" ⃗ So, ("A" P) ⃗ . "n" ⃗ = 0 ("r" ⃗ − "a" ⃗)."n" ⃗ = 0 Example 17 Find the vector and Cartesian equations of the plane which passes through the point (5, 2, – 4) and perpendicular to the line with direction ratios 2, 3, – 1.Vector form Equation of plane passing through point A whose position vector is 𝒂 ⃗ & perpendicular to 𝒏 ⃗ is (𝒓 ⃗ − 𝒂 ⃗) . 𝒏 ⃗ = 0 Given Plane passes through (5, 2, −4) So 𝒂 ⃗ = 5𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂ Direction ratios of line perpendicular to plane = 2, 3, −1 So, "n" ⃗ = 2𝑖 ̂ + 3𝑗 ̂ − 1𝑘 ̂ Equation of plane in vector form is (𝑟 ⃗ − 𝑎 ⃗) . 𝑛 ⃗ = 0 [𝒓 ⃗−(𝟓𝒊 ̂+𝟐𝒋 ̂−𝟒𝒌 ̂)]. (𝟐𝒊 ̂+𝟑𝒋 ̂−𝒌 ̂) = 0 Now, Finding Cartesian form using two methods Cartesian form (Method 1) Vector equation is [𝑟 ⃗−(5𝑖 ̂+2𝑗 ̂−4𝑘 ̂)]. (2𝑖 ̂+3𝑗 ̂−𝑘 ̂) = 0 Put 𝒓 ⃗ = x𝒊 ̂ + y𝒋 ̂ + z𝒌 ̂ [(𝑥𝑖 ̂+𝑦𝑗 ̂+𝑧𝑘 ̂ )−(5𝑖 ̂+2𝑗 ̂−4𝑘 ̂)].(2𝑖 ̂ + 3𝑗 ̂ − 𝑘 ̂) = 0 [(𝑥−5) 𝑖 ̂+(𝑦−2) 𝑗 ̂+ (𝑧−(− 4))𝑘 ̂ ].(2𝑖 ̂ + 3𝑗 ̂ − 𝑘 ̂) = 0 2(x − 5) + 3 (y − 2) + (− 1)(z + 4) = 0 2x − 10 + 3y − 6 − z − 4 = 0 2x + 3y − z − 20 = 0 2x + 3y − z = 20 Therefore equation of plane in Cartesian form is 2x + 3y − z = 20 Cartesian form (Method 2) Equation of plane passing through (x1, y1, z1) and perpendicular to a line with direction ratios A, B, C is A(x − x1) + B(y − y1) + c (z − z1) = 0 Since the plane passes through (5, 2, −4) x1 = 5, y1 = 2, z1 = −4 Direction ratios of line perpendicular to plane = 2, 3, −1 ∴ A = 2, B = 3, C = −1 Therefore, equation of line in Cartesian form is 2(x − 5) + 3 (y − 2) + (−1) (x − (−4)) = 0 2 (x − 5) + 3(y − 2) − 1 (z + 4) = 0 2x − 10 + 3y − 6 − z − 4 = 0 2x + 3y − z − 20 = 0 2x + 3y − z = 20 Therefore equation of plane in Cartesian form is 2x + 3y − z = 20
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8
Example, 9 Not in Syllabus - CBSE Exams 2021
Example 10 Not in Syllabus - CBSE Exams 2021
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17 You are here
Example 18
Example 19 Important
Example 20 Important
Example 21 Important
Example 22 Not in Syllabus - CBSE Exams 2021
Example 23 Important Not in Syllabus - CBSE Exams 2021
Example 24
Example, 25 Important
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Example 30 Important
About the Author