


Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8
Example, 9 Deleted for CBSE Board 2022 Exams
Example 10 Important Deleted for CBSE Board 2022 Exams
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15
Example 16 Important You are here
Example 17
Example 18
Example 19 Important
Example 20 Important
Example 21 Important
Example 22 Deleted for CBSE Board 2022 Exams
Example 23 Important Deleted for CBSE Board 2022 Exams
Example 24
Example, 25 Important Deleted for CBSE Board 2022 Exams
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Example 30 Important
Last updated at Feb. 1, 2020 by Teachoo
Example 16 Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x β 3y + 4z β 6 = 0. Let point P(x1, y1, z1) be foot of perpendicular from origin Since perpendicular to plane is parallel to normal vector Vector (πΆπ·) β is parallel to normal vector π β Given equation of the plane is 2x β 3y + 4z β 6 = 0 2x β 3y + 4z = 6 So, Normal vector = π β = 2π Μ β 3π Μ + 4π Μ Since, (πΆπ·) β and π β are parallel their direction ratios are proportional. Finding direction ratios Direction ratios are proportional π_1/π_2 = π_1/π_2 = π_1/π_2 = k π₯_1/2 = π¦_1/( β 3) = π§_1/4 = k x1 = 2k , y1 = β3k , z1 = 4k (πΆπ·) β = x1π Μ + y1π Μ + z1π Μ Direction ratios = x1, y1, z1 β΄ a1 = x1 , b1 = y1, c1 = z1 π β = 2π Μ β 3π Μ + 4π Μ Direction ratios = 2, β3, 4 β΄ a2 = 2 , b2 = β3, c2 = 4 Also, point P(x1, y1, z1) lies in the plane. Putting P (2k, β 3k, 4k) in equation of plane 2x β 3y + 4z = 6 2(2k) β 3(β3k) + 4(4k) = 6 4k + 9k + 16k = 6 29k = 6 β΄ k = 6/29 So, π₯_1 = 2k = 2 Γ 6/29 = 12/29 π¦_1 = β3k = β3 Γ (6 )/29 = (β18)/29 π§_1 = 4k = 4 Γ 6/29 = 24/29 Therefore, coordinate of foot of perpendicular are (ππ/ππ, ( βππ)/ππ,ππ/ππ)