Check sibling questions

Example 20 - Equation of plane passing through intersection

Example 20 - Chapter 11 Class 12 Three Dimensional Geometry - Part 2
Example 20 - Chapter 11 Class 12 Three Dimensional Geometry - Part 3 Example 20 - Chapter 11 Class 12 Three Dimensional Geometry - Part 4

This video is only available for Teachoo black users

Get Real time Doubt solving from 8pm to 12 am!


Transcript

Example 20 Find the vector equation of the plane passing through the intersection of the planes π‘Ÿ βƒ— . (𝑖 Μ‚ + 𝑗 Μ‚ + π‘˜ Μ‚) = 6 and π‘Ÿ βƒ— . (2𝑖 Μ‚ + 3𝑗 Μ‚ + 4π‘˜ Μ‚) = βˆ’ 5, and the point (1, 1, 1).The vector equation of a plane passing through the intersection of planes π‘Ÿ βƒ—. (𝑛1) βƒ— = d1 and π‘Ÿ βƒ—. (𝑛2) βƒ— = d2 and also through the point (x1, y1, z1) is 𝒓 βƒ—.((π’πŸ) βƒ— + πœ†(π’πŸ) βƒ—) = d1 + πœ†d2 Given, the plane passes through 𝒓 βƒ—.(π’Š Μ‚ + 𝒋 Μ‚ + π’Œ Μ‚) = 6 Comparing with π‘Ÿ βƒ—.(𝑛1) βƒ— = d1, (π’πŸ) βƒ— = π’Š Μ‚ + 𝒋 Μ‚ + π’Œ Μ‚ & d1 = 6 𝒓 βƒ—.(2π’Š Μ‚ + 3𝒋 Μ‚ + 4π’Œ Μ‚) = βˆ’5 β€“π‘Ÿ βƒ—.(2𝑖 Μ‚ + 3𝑗 Μ‚ + 4π‘˜ Μ‚) = 5 π‘Ÿ βƒ— .(βˆ’ 2𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) = 5 Comparing with π‘Ÿ βƒ—.(𝑛2) βƒ— = d2 (π’πŸ) βƒ— = βˆ’ 2π’Š Μ‚ βˆ’ 3𝒋 Μ‚ βˆ’ 4π’Œ Μ‚ & d2 = 5 Equation of plane is π‘Ÿ βƒ—. [(𝑖 Μ‚+𝑗 Μ‚+π‘˜ Μ‚ )+"πœ†" (βˆ’2𝑖 Μ‚βˆ’3𝑗 Μ‚βˆ’4π‘˜ Μ‚)] = 6 + πœ†5 𝒓 βƒ—. [(π’Š Μ‚" " +𝒋 Μ‚" " +π’Œ Μ‚ )βˆ’"πœ†" (πŸπ’Š Μ‚+πŸ‘π’‹ Μ‚+πŸ’π’Œ Μ‚)] = 6 + 5πœ† Now to find πœ† , put 𝒓 βƒ— = xπ’Š Μ‚ + y𝒋 Μ‚ + zπ’Œ Μ‚ (x𝑖 Μ‚ + y𝑗 Μ‚ + zπ‘˜ Μ‚). [(𝑖 Μ‚+𝑗 Μ‚+π‘˜ Μ‚ )βˆ’"πœ†" (2𝑖 Μ‚+3𝑗 Μ‚+4π‘˜ Μ‚)] = 5πœ† + 6 (x𝑖 Μ‚ + y𝑗 Μ‚ + zπ‘˜ Μ‚).(𝑖 Μ‚+𝑗 Μ‚+π‘˜ Μ‚ ) βˆ’ πœ† (x𝑖 Μ‚ + y𝑗 Μ‚ + zπ‘˜ Μ‚).(2𝑖 Μ‚+3𝑗 Μ‚+4π‘˜ Μ‚) = 5πœ† + 6 (x Γ— 1) + (y Γ— 1) + (z Γ— 1) βˆ’ πœ†[(π‘₯Γ—2)+(𝑦×3)+(𝑧×4)] = 5πœ† + 6 x + y + z βˆ’ πœ†[2π‘₯+3𝑦+4𝑧] = 5πœ† + 6 x + y + z βˆ’ 2πœ†π‘₯ βˆ’ 3πœ†y βˆ’ 4πœ†z = 5πœ† + 6 (1 βˆ’ 2πœ†)x + (1 βˆ’ 3πœ†)y + (1 βˆ’ 4πœ†) z = 5πœ† + 6 Since the plane passes through (1, 1, 1), Putting (1, 1, 1) in (2) (1 βˆ’ 2πœ†)x + (1 βˆ’ 3πœ†)y + (1 βˆ’ 4πœ†) z = 5πœ† + 6 (1 βˆ’2πœ†) Γ— 1 + (1 βˆ’ 3πœ†) Γ— 1 + (1 βˆ’ 4πœ†) Γ— 1 = 5πœ† + 6 1 βˆ’2πœ† + 1 βˆ’ 3πœ† + 1 βˆ’ 4πœ†= 5πœ† + 6 3 βˆ’ 9πœ† = 5πœ† + 6 βˆ’14πœ† = 3 ∴ πœ† = (βˆ’πŸ‘)/πŸπŸ’ Putting value of πœ† in (1), π‘Ÿ βƒ—. [(𝑖 Μ‚" " +" " 𝑗 Μ‚" " +" " π‘˜ Μ‚ )βˆ’(( βˆ’3)/14)(2𝑖 Μ‚+3𝑗 Μ‚+"4" π‘˜ Μ‚)]= 6 + 5 Γ— ( βˆ’3)/14 π‘Ÿ βƒ—. [(𝑖 Μ‚+𝑗 Μ‚+" " π‘˜ Μ‚ )+3/14(2𝑖 Μ‚+3𝑗 Μ‚+"4" π‘˜ Μ‚)]= 6 βˆ’ 15/14 π‘Ÿ βƒ—. [𝑖 Μ‚+𝑗 Μ‚" " +π‘˜ Μ‚+ 6/14 𝑖 Μ‚+9/14 𝑗 Μ‚+12/14 π‘˜ Μ‚ ]= 69/14 π‘Ÿ βƒ—. [(1+6/14) 𝑖 Μ‚ +(1+9/14) 𝑗 Μ‚+(1+12/14) π‘˜ Μ‚ ]= 69/14 π‘Ÿ βƒ—. [20/14 𝑖 Μ‚ + 23/14 𝑗 Μ‚ + 26/14 π‘˜ Μ‚ ]= 69/14 π‘Ÿ βƒ—. [1/14(20𝑖 Μ‚+23𝑗 Μ‚+26π‘˜ Μ‚)]= 69/14 1/14 π‘Ÿ βƒ—. (20𝑖 Μ‚ + 23𝑗 Μ‚ + 26π‘˜ Μ‚) = 69/14 π‘Ÿ βƒ—. (20𝑖 Μ‚ + 23𝑗 Μ‚ + 26π‘˜ Μ‚) = 69 Therefore, the vector equation of the required plane is 𝒓 βƒ—.(πŸπŸŽπ’Š Μ‚ + πŸπŸ‘π’‹ Μ‚ + πŸπŸ”π’Œ Μ‚) = πŸ”πŸ—

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.