


Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8
Example, 9 Deleted for CBSE Board 2022 Exams
Example 10 Important Deleted for CBSE Board 2022 Exams
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18
Example 19 Important
Example 20 Important You are here
Example 21 Important
Example 22 Deleted for CBSE Board 2022 Exams
Example 23 Important Deleted for CBSE Board 2022 Exams
Example 24
Example, 25 Important Deleted for CBSE Board 2022 Exams
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Example 30 Important
Last updated at Feb. 1, 2020 by Teachoo
Example 20 Find the vector equation of the plane passing through the intersection of the planes π β . (π Μ + π Μ + π Μ) = 6 and π β . (2π Μ + 3π Μ + 4π Μ) = β 5, and the point (1, 1, 1).The vector equation of a plane passing through the intersection of planes π β. (π1) β = d1 and π β. (π2) β = d2 and also through the point (x1, y1, z1) is π β.((ππ) β + π(ππ) β) = d1 + πd2 Given, the plane passes through π β.(π Μ + π Μ + π Μ) = 6 Comparing with π β.(π1) β = d1, (ππ) β = π Μ + π Μ + π Μ & d1 = 6 π β.(2π Μ + 3π Μ + 4π Μ) = β5 βπ β.(2π Μ + 3π Μ + 4π Μ) = 5 π β .(β 2π Μ β 3π Μ β 4π Μ) = 5 Comparing with π β.(π2) β = d2 (ππ) β = β 2π Μ β 3π Μ β 4π Μ & d2 = 5 Equation of plane is π β. [(π Μ+π Μ+π Μ )+"π" (β2π Μβ3π Μβ4π Μ)] = 6 + π5 π β. [(π Μ" " +π Μ" " +π Μ )β"π" (ππ Μ+ππ Μ+ππ Μ)] = 6 + 5π Now to find π , put π β = xπ Μ + yπ Μ + zπ Μ (xπ Μ + yπ Μ + zπ Μ). [(π Μ+π Μ+π Μ )β"π" (2π Μ+3π Μ+4π Μ)] = 5π + 6 (xπ Μ + yπ Μ + zπ Μ).(π Μ+π Μ+π Μ ) β π (xπ Μ + yπ Μ + zπ Μ).(2π Μ+3π Μ+4π Μ) = 5π + 6 (x Γ 1) + (y Γ 1) + (z Γ 1) β π[(π₯Γ2)+(π¦Γ3)+(π§Γ4)] = 5π + 6 x + y + z β π[2π₯+3π¦+4π§] = 5π + 6 x + y + z β 2ππ₯ β 3πy β 4πz = 5π + 6 (1 β 2π)x + (1 β 3π)y + (1 β 4π) z = 5π + 6 Since the plane passes through (1, 1, 1), Putting (1, 1, 1) in (2) (1 β 2π)x + (1 β 3π)y + (1 β 4π) z = 5π + 6 (1 β2π) Γ 1 + (1 β 3π) Γ 1 + (1 β 4π) Γ 1 = 5π + 6 1 β2π + 1 β 3π + 1 β 4π= 5π + 6 3 β 9π = 5π + 6 β14π = 3 β΄ π = (βπ)/ππ Putting value of π in (1), π β. [(π Μ" " +" " π Μ" " +" " π Μ )β(( β3)/14)(2π Μ+3π Μ+"4" π Μ)]= 6 + 5 Γ ( β3)/14 π β. [(π Μ+π Μ+" " π Μ )+3/14(2π Μ+3π Μ+"4" π Μ)]= 6 β 15/14 π β. [π Μ+π Μ" " +π Μ+ 6/14 π Μ+9/14 π Μ+12/14 π Μ ]= 69/14 π β. [(1+6/14) π Μ +(1+9/14) π Μ+(1+12/14) π Μ ]= 69/14 π β. [20/14 π Μ + 23/14 π Μ + 26/14 π Μ ]= 69/14 π β. [1/14(20π Μ+23π Μ+26π Μ)]= 69/14 1/14 π β. (20π Μ + 23π Μ + 26π Μ) = 69/14 π β. (20π Μ + 23π Μ + 26π Μ) = 69 Therefore, the vector equation of the required plane is π β.(πππ Μ + πππ Μ + πππ Μ) = ππ