Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Examples

Example 1

Example, 2 Important

Example, 3

Example, 4 Important

Example, 5 Important

Example, 6 Important

Example, 7

Example 8 Important

Example 9

Example 10 Important

Question 1 Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 Deleted for CBSE Board 2024 Exams

Question 5 Deleted for CBSE Board 2024 Exams

Question 6 Important Deleted for CBSE Board 2024 Exams

Question 7 Deleted for CBSE Board 2024 Exams

Question 8 Deleted for CBSE Board 2024 Exams

Question 9 Important Deleted for CBSE Board 2024 Exams

Question 10 Important Deleted for CBSE Board 2024 Exams

Question 11 Important Deleted for CBSE Board 2024 Exams

Question 12 Deleted for CBSE Board 2024 Exams

Question 13 Important Deleted for CBSE Board 2024 Exams You are here

Question 14 Deleted for CBSE Board 2024 Exams

Question 15 Important Deleted for CBSE Board 2024 Exams

Question 16 Deleted for CBSE Board 2024 Exams

Question 17 Important Deleted for CBSE Board 2024 Exams

Question 18 Important Deleted for CBSE Board 2024 Exams

Question 19 Important Deleted for CBSE Board 2024 Exams

Question 20 Important Deleted for CBSE Board 2024 Exams

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

Last updated at May 29, 2023 by Teachoo

Question 13 Find the angle between the two planes 3x – 6y + 2z = 7 and 2x + 2y – 2z =5.Angle between two planes A1x + B1y + C1z = d1 and A2x + B2y + C2z = d2 is given by cos θ = |(𝑨_𝟏 𝑨_𝟐 + 𝑩_𝟏 𝑩_𝟐 + 𝑪_𝟏 𝑪_𝟐)/(√(〖𝑨_𝟏〗^𝟐 + 〖𝑩_𝟏〗^𝟐 + 〖𝑪_𝟏〗^𝟐 ) √(〖𝑨_𝟐〗^𝟐 + 〖𝑩_𝟐〗^𝟐 + 〖𝑪_𝟐〗^𝟐 ))| Given the two planes are 3x − 6y + 2z = 7 Comparing with A1x + B1y + C1z = d1 A1 = 3 , B1 = –6 , C1 = 2 , 𝑑_1= 7 2x + 2y − 2z = 5 Comparing with A2x + B2y + C2z = d2 A2 = 2 , B2 = 2 , C2 = –2 , 𝑑_2= 5 So, cos θ = |((3 × 2) + (−6 × 2) + (2 × −2))/(√(3^2 + 〖(−6)〗^2 + 2^2 ) √(2^2 + 2^2 + 〖(−2)〗^2 ))| = |(6 + (−12) + (−4))/(√(9 + 36 + 4) ×√(4 + 4 + 4))| = |(−10)/(√(49 ) ×√12)| = |(−10)/(7 ×√(4×3))| = 10/(7 × 2 × √3) = 5/(7√3) = 5/(7√3) × √3/√3 = (5√3)/21 So, cos θ = (5√3)/21 ∴ θ = 〖𝒄𝒐𝒔〗^(−𝟏) ((𝟓√𝟑)/𝟐𝟏) Therefore, the angle between the two planes is 〖𝑐𝑜𝑠〗^(−1) ((5√3)/21) E