


Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8
Example, 9
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18
Example 19 Important
Example 20 Important
Example 21 Important
Example 22
Example 23 Important You are here
Example 24
Example, 25 Important
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Example 30 Important
Last updated at Feb. 1, 2020 by Teachoo
Example 23 Find the angle between the two planes 3x β 6y + 2z = 7 and 2x + 2y β 2z =5.Angle between two planes A1x + B1y + C1z = d1 and A2x + B2y + C2z = d2 is given by cos ΞΈ = |(π¨_π π¨_π + π©_π π©_π + πͺ_π πͺ_π)/(β(γπ¨_πγ^π + γπ©_πγ^π + γπͺ_πγ^π ) β(γπ¨_πγ^π + γπ©_πγ^π + γπͺ_πγ^π ))| Given the two planes are 3x β 6y + 2z = 7 Comparing with A1x + B1y + C1z = d1 A1 = 3 , B1 = β6 , C1 = 2 , π_1= 7 2x + 2y β 2z = 5 Comparing with A2x + B2y + C2z = d2 A2 = 2 , B2 = 2 , C2 = β2 , π_2= 5 So, cos ΞΈ = |((3 Γ 2) + (β6 Γ 2) + (2 Γ β2))/(β(3^2 + γ(β6)γ^2 + 2^2 ) β(2^2 + 2^2 + γ(β2)γ^2 ))| = |(6 + (β12) + (β4))/(β(9 + 36 + 4) Γβ(4 + 4 + 4))| = |(β10)/(β(49 ) Γβ12)| = |(β10)/(7 Γβ(4Γ3))| = 10/(7 Γ 2 Γ β3) = 5/(7β3) = 5/(7β3) Γ β3/β3 = (5β3)/21 So, cos ΞΈ = (5β3)/21 β΄ ΞΈ = γπππγ^(βπ) ((πβπ)/ππ) Therefore, the angle between the two planes is γπππ γ^(β1) ((5β3)/21) E