Get live Maths 1-on-1 Classs - Class 6 to 12

Examples

Example 1

Example, 2 Important

Example, 3

Example, 4 Important

Example, 5 Important

Example, 6 Important

Example, 7

Example 8

Example, 9

Example 10 Important

Example 11

Example 12 Important

Example 13 Important Deleted for CBSE Board 2023 Exams

Example 14 Deleted for CBSE Board 2023 Exams

Example 15 Deleted for CBSE Board 2023 Exams You are here

Example 16 Important Deleted for CBSE Board 2023 Exams

Example 17 Deleted for CBSE Board 2023 Exams

Example 18 Deleted for CBSE Board 2023 Exams

Example 19 Important Deleted for CBSE Board 2023 Exams

Example 20 Important Deleted for CBSE Board 2023 Exams

Example 21 Important Deleted for CBSE Board 2023 Exams

Example 22 Deleted for CBSE Board 2023 Exams

Example 23 Important Deleted for CBSE Board 2023 Exams

Example 24 Deleted for CBSE Board 2023 Exams

Example, 25 Important Deleted for CBSE Board 2023 Exams

Example 26

Example 27 Important Deleted for CBSE Board 2023 Exams

Example 28 Important Deleted for CBSE Board 2023 Exams

Example 29 Important

Example 30 Important Deleted for CBSE Board 2023 Exams

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

Last updated at March 22, 2023 by Teachoo

Example 15 (Method 1) Find the distance of the plane 2x 3y + 4z 6 = 0 from the origin. Given, the equation of plane is 2x 3y + 4z 6 = 0 2x 3y + 4z = 6 Direction ratios of = , , a = 2, b = 3, c = 4 Also, 2 + 2 + 2 = 2 2 + ( 3) 2 + 4 2 = 4+9+16 = 29 Direction cosines are l = 2 + 2 + 2 , m = 2 + 2 + 2 , n = 2 + 2 + 2 l = 2 29 , m = 3 29 ,n = 4 29 Equation of plane is lx + my + nz = d 2 29 x 3 29 y + 4 29 z = d 2x 3y + 4z = d 29 Comparing with (1) i.e. 2x 3y + 4z = 6, d 29 = 6 d = Example 15 (Method 2) Find the distance of the plane 2x 3y + 4z 6 = 0 from the origin. Distance of point P(x1, y1, z1) from plane Ax + By + Cz = D is d = 1 + 1 + 1 2 + 2 + 2 Since we have to find distance from Origin P(x1, y1, z1) = O(0, 0, 0) x1 = 0, y1 = 0, z1 = 0 & plane is 2x 3y + 4z 6 = 0 2x 3y + 4z = 6 Comparing with Ax + By + Cz = D A = 2, B = 3, C = 4 & D = 6 Putting values in formula d = 1 + 1 + 1 2 + 2 + 2 d = 2 0 3 0 + 4 0 6 2 2 + ( 3) 2 + 4 2 d = 6 4 + 9 + 16 d = 6 29 d =