Examples

Example 1

Example, 2 Important

Example, 3

Example, 4 Important

Example, 5 Important

Example, 6 Important

Example, 7

Example 8 Important

Example 9

Example 10 Important

Question 1 Deleted for CBSE Board 2025 Exams

Question 2 Deleted for CBSE Board 2025 Exams

Question 3 Important Deleted for CBSE Board 2025 Exams

Question 4 Deleted for CBSE Board 2025 Exams You are here

Question 5 Deleted for CBSE Board 2025 Exams

Question 6 Important Deleted for CBSE Board 2025 Exams

Question 7 Deleted for CBSE Board 2025 Exams

Question 8 Deleted for CBSE Board 2025 Exams

Question 9 Important Deleted for CBSE Board 2025 Exams

Question 10 Important Deleted for CBSE Board 2025 Exams

Question 11 Important Deleted for CBSE Board 2025 Exams

Question 12 Deleted for CBSE Board 2025 Exams

Question 13 Important Deleted for CBSE Board 2025 Exams

Question 14 Deleted for CBSE Board 2025 Exams

Question 15 Important Deleted for CBSE Board 2025 Exams

Question 16 Deleted for CBSE Board 2025 Exams

Question 17 Important Deleted for CBSE Board 2025 Exams

Question 18 Important Deleted for CBSE Board 2025 Exams

Question 19 Important Deleted for CBSE Board 2025 Exams

Question 20 Important Deleted for CBSE Board 2025 Exams

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

Last updated at April 16, 2024 by Teachoo

Question 4 Find the direction cosines of the unit vector perpendicular to the plane .(6 3 2 ) + 1 = 0 passing through the origin. Vector equation of a plane at a distance d from the origin and unit vector to normal from origin is . = d Unit vector of = = 1 ( ) Given, equation of plane is .(6 3 2 ) + 1 = 0 .(6 3 2 ) = 1 Multiplying with 1 on both sides, .(6 3 2 ) = 1 1 . ( 6 + 3 + 2 ) = 1 So; = 6 + 3 + 2 Magnitude of = 6 2+32+22 = 36+9+4 = 49 = 7 Now, = 1 ( ) = 1 7 ( 6 + 3 + 2 ) = + + Direction cosines of unit vector perpendicular to the given plane i.e. in are , , .