


Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8
Example, 9
Example 10 Important
Example 11
Example 12 Important
Example 13 Important Deleted for CBSE Board 2023 Exams
Example 14 Deleted for CBSE Board 2023 Exams
Example 15 Deleted for CBSE Board 2023 Exams
Example 16 Important Deleted for CBSE Board 2023 Exams
Example 17 Deleted for CBSE Board 2023 Exams
Example 18 Deleted for CBSE Board 2023 Exams
Example 19 Important Deleted for CBSE Board 2023 Exams
Example 20 Important Deleted for CBSE Board 2023 Exams
Example 21 Important Deleted for CBSE Board 2023 Exams
Example 22 Deleted for CBSE Board 2023 Exams
Example 23 Important Deleted for CBSE Board 2023 Exams
Example 24 Deleted for CBSE Board 2023 Exams
Example, 25 Important Deleted for CBSE Board 2023 Exams You are here
Example 26
Example 27 Important Deleted for CBSE Board 2023 Exams
Example 28 Important Deleted for CBSE Board 2023 Exams
Example 29 Important
Example 30 Important Deleted for CBSE Board 2023 Exams
Last updated at March 16, 2023 by Teachoo
Example, 25 Find the angle between the line (π₯ + 1)/2 = π¦/3 = (π§ β 3)/6 And the plane 10x + 2y β 11z = 3. The angle between a line (π₯ β π₯_1)/π = (π¦ β π¦_1)/π = (π§ βγ π§γ_1)/π and the normal to the plane Ax + By + Cz = D is given by cos ΞΈ = |(π΄π + π΅π + πΆπ)/(β(π^2 + π^2 +γ πγ^2 ) β(π΄^2 +γ π΅γ^2 +γ πΆγ^2 ))| So, angle between line and plane is given by sin π = |(π΄π + π΅π + πΆπ)/(β(π^2 + π^2 + π^2 )+β(π΄^2 + π΅^2 +γ πΆγ^2 ))| Given, the line is (π₯ + 1)/2 = π¦/3 = (π§ β 3)/6 (π₯ β (β1))/2 = (π¦ β 0)/3 = (π§ β 3)/6 Comparing with (π₯ βγ π₯γ_1)/π = (π¦ β π¦_1)/π = (π§ β π§_1)/π , π = 2, b = 3, c = 6 The plane is 10x + 2y β 11z = 3 Comparing with Ax + By + Cz = D, A = 10, B = 2, C = β11 So, sin Ο = |((10 Γ 2) + (2 Γ 3) + (β11 Γ 6))/(β(2^2 + 3^2 + 6^2 ) β(γ10γ^(2 )+γ 2γ^2 + γ(β11)γ^2 ))| = |(20 + 6 β 66)/(β(4 + 9 + 36) β(100 + 4 + 121))| = |(β40)/(7 Γ 15)| = 8/21 So, sin Ο = 8/21 β΄ π = γπππγ^(βπ)β‘(π/ππ) Therefore, the angle between the given line and plane is sin^(β1)β‘(8/21).