Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Feb. 1, 2020 by Teachoo

Transcript

Misc 21 Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then 1/π2 + 1/π2 + 1/π2 = 1/π2 . Distance of the point (π₯_1,π¦_1,π§_1) from the plane Ax + By + Cz = D is |(π¨π_π + π©π_π + πͺπ_π β π«)/β(π¨^π + π©^π + πͺ^π )| The equation of a plane having intercepts π, b, c on the x β, y β & z β axis respectively is π/π + π/π + π/π = 1 Comparing with Ax + By + Cz = D, A = 1/π , B = 1/π , C = 1/π , D = 1 Given, the plane is at a distance of βπβ units from the origin. So, The point is O(0, 0, 0) So, π₯_1 = 0, π¦_1= 0, π§_1= 0 Now, Distance = |(π΄π₯_1 + π΅π¦_1 + πΆπ§_1 β π·)/β(π΄^2 + π΅^2 + πΆ^2 )| Putting values π = |(1/π Γ 0 + 1/π Γ 0 + 1/π Γ 0 β 1)/β((1/π)^2+ (1/π)^2+ (1/π)^2 )| π = |(0 + 0 + 0 β 1)/(β(1/π^2 + 1/π^2 + 1/π^2 ) )| π = |(β1)/(β(1/π^2 + 1/π^2 + 1/π^2 ) )| π = 1/(β(1/π^2 + 1/π^2 + 1/π^2 ) ) 1/π = β(1/π^2 + 1/π^2 + 1/π^2 ) Squaring both sides 1/π^2 = 1/π^2 + 1/π^2 + 1/π^2 Hence proved.

Miscellaneous

Misc 1
Important

Misc 2

Misc 3

Misc 4 Important

Misc 5 Important

Misc 6 Important

Misc 7

Misc 8 Important

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12 Important

Misc 13 Important

Misc 14 Important

Misc 15 Important

Misc 16 Important

Misc 17 Important

Misc 18 Important

Misc 19 Important

Misc 20 Important

Misc 21 Important You are here

Misc 22 Important

Misc 23 Important

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.