



Now learn Economics at Teachoo for Class 12
Miscellaneous
Misc 2
Misc 3 Deleted for CBSE Board 2022 Exams
Misc 4 Important
Misc 5 Important
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16
Misc 17 Important You are here
Misc 18 Important
Misc 19
Misc 20 Important
Misc 21 Important
Misc 22 (MCQ) Important
Misc 23 (MCQ) Important
Miscellaneous
Last updated at Feb. 1, 2020 by Teachoo
Misc 17 Find the equation of the plane which contains the line of intersection of the planes 𝑟 ⃗ . (𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) – 4 = 0 , 𝑟 ⃗ . (2𝑖 ̂ + 𝑗 ̂ – 𝑘 ̂) + 5 = 0 and which is perpendicular to the plane 𝑟 ⃗ . (5𝑖 ̂ + 3𝑗 ̂ – 6𝑘 ̂) + 8 = 0 .Equation of a plane passing through the intersection of the places A1x + B1y + C1z = d1 and A2x + B2y + C2z = d2 is (A1x + B1y + C1z − d1) + 𝜆 (A2x + B2y + C2z – d2) = 0 Converting equation of planes to Cartesian form to find A1, B1, C1, d1 & A2, B2, C2, d2 𝒓 ⃗. (𝒊 ̂ + 2𝒋 ̂ + 3𝒌 ̂) − 4 = 0 𝑟 ⃗. (𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) = 4 Putting 𝒓 ⃗ = x𝒊 ̂ + y𝒋 ̂ + z𝒌 ̂ (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂).(𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) = 4 (x × 1) + (y × 2) + (z × 3) = 4 1x + 2y + 3z = 4 Comparing with 𝐴_1 "x"+"B1y"+𝐶_1 "z = d1" 𝐴_1 = 1, 𝐵_1= 2 , 𝐶_1 = 3 , 𝑑_1 = 4 𝒓 ⃗. (2𝒊 ̂ + 𝒋 ̂ − 𝒌 ̂) + 5 = 0 𝑟 ⃗. (2𝑖 ̂ + 𝑗 ̂ − 𝑘 ̂) = − 5 −𝑟 ⃗. (2𝑖 ̂ + 𝑗 ̂ − 𝑘 ̂) = 5 𝑟 ⃗. ( −2𝑖 ̂ − 𝑗 ̂ + 𝑘 ̂) = 5 Putting 𝒓 ⃗ = x𝒊 ̂ + y𝒋 ̂ + z𝒌 ̂, (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂).(-2𝑖 ̂ − 𝑗 ̂ + 𝑘 ̂) = 5 (x ×− 2) + (Y × − 1) + (z × 1) = 5 −2x − 1y + 1z = 5 Comparing with 𝐴_2 "x"+ "B2y"+ 𝐶_2 "z = d2" 𝐴_2 = −2, 𝐵_2= −1 , 𝐶_2 = 1 , 𝑑_2 = 5 Equation of plane is (A1x + B1y + C1z − d1) + 𝜆 (A2x + B2y + C2z = d2) = 0 Putting values (1x + 2y + 3z − 4) + 𝜆 ( − 2x − 1y + 1z − 5) = 0 (1 − 2𝜆) x + (2 − 𝜆)y + (3 + 𝜆) z + ( −4 − 5𝜆) = 0 Now, the plane is perpendicular to the plane 𝑟 ⃗.(5𝑖 ̂ + 3𝑗 ̂ − 6𝑘 ̂) + 8 = 0 So, normal to plane 𝑁 ⃗ will be perpendicular to normal 𝑛 ⃗ of 𝑟 ⃗.(5𝑖 ̂ + 3𝑗 ̂ − 6𝑘 ̂) + 8 = 0 Now, 𝑟 ⃗.(5𝑖 ̂ + 3𝑗 ̂ − 6𝑘 ̂) + 8 = 0 𝑟 ⃗ .(5𝑖 ̂ + 3𝑗 ̂ − 6𝑘 ̂) = –8 − 𝑟 ⃗ .(5𝑖 ̂ + 3𝑗 ̂ − 6𝑘 ̂) = 8 𝑟 ⃗ .( −5𝑖 ̂ − 3𝑗 ̂ + 6𝑘 ̂) = 8 Finding direction cosines of 𝑁 ⃗ & 𝑛 ⃗ Since, 𝑁 ⃗ is perpendicular to 𝑛 ⃗ 𝑎1 𝑎2 + b1 b2 + c1 c2 = 0 (1 − 2𝜆) × −5 + (2 − 𝜆) × −3 + (3 + 𝜆) × 6 = 0 Theory : Two lines with direction ratios 𝑎1, b1, c1 and 𝑎2, b2, c2 are perpendicular if 𝑎1 𝑎2 + b1b2 + c1 c2 = 0 𝑵 ⃗ = (1 − 2𝜆) 𝒊 ̂ + (2 − 𝜆) 𝒋 ̂ + (3 + 𝜆) 𝒌 ̂ Direction ratios = 1 − 2𝜆, 2 − 𝜆, 3 + 𝜆 ∴ 𝑎1 = 1 − 2𝜆, b1 = 2 − 𝜆, c1 = 3 + 𝜆 𝒏 ⃗ = − 5𝒊 ̂ – 3𝒋 ̂ + 6𝒌 ̂ Direction ratios = −5, −3, 6 ∴ 𝑎2 = − 5, b2 = −3, c2 = 6, − 5 + 10𝜆 − 6 + 3𝜆 + 18 + 6𝜆 = 0 19𝜆 + 7 = 0 ∴ 𝜆 = (−𝟕)/𝟏𝟗 Putting value of 𝜆 in (1), (1 − 2𝜆) x + (2 − 𝜆)y + (3 + 𝜆) z + ( −4 − 5𝜆) = 0 (1−2 ×(−7)/19) x + (2−(( −7)/19)) y + (3+(( − 7)/19)) z + ( −4−5×(−7)/19) = 0 (1 + 14/19) x + (2 + 7/19)y + (3 − 7/19)z + ( − 4 + 35/19) = 0 33/19 x + 45/19 y + 50/19 z − 41/19 = 0 1/19 (33x + 45y + 50z − 41) = 0 33x + 45y + 50z − 41 = 0