Last updated at Feb. 4, 2020 by Teachoo
Transcript
Misc 2 If π_1 , π_1, π_1 and π_2 , π_2, π_2 are the direction cosines of two mutually perpendicular lines, show that direction cosines of line perpendicular to both of these are π_1 π_2 β π_2 π_1 , π_1 π_2 β π_2 π_1 , π_1 π_2 β π_2 π_1.We know that π β Γ π β is perpendicular to both π β & π β So, required line is cross product of lines having direction cosines π_1 , π_1, π_1 and π_2 , π_2, π_2 Required line = |β 8(π Μ&π Μ&π Μ@π_1&π_1&π_1@π_2&π_2&π_2 )| = π Μ (π_1 π_2 β π_2 π_1) β π Μ (π_1 π_2 β π_2 π_1) + π Μ(π_1 π_2 β π_2 π_1) = (π_1 π_2 β π_2 π_1) π Μ + (π_2 π_1βπ_1 π_2) π Μ + (π_1 π_2 β π_2 π_1) π Μ Hence, direction cosines = π_1 π_2 β π_2 π_1 , π_1 π_2 β π_2 π_1 , π_1 π_2 β π_2 π_1 β΄ Direction cosines of the line perpendicular to both of these are π_1 π_2 β π_2 π_1 , π_1 π_2 β π_2 π_1 , π_1 π_2 β π_2 π_1. Hence proved
Miscellaneous
Misc 2 You are here
Misc 3 Deleted for CBSE Board 2022 Exams
Misc 4 Important
Misc 5 Important
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Misc 19
Misc 20 Important
Misc 21 Important
Misc 22 (MCQ) Important
Misc 23 (MCQ) Important
Miscellaneous
About the Author