





Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5 Important
Misc 6 Important
Misc 7 Deleted for CBSE Board 2023 Exams
Misc 8 Important Deleted for CBSE Board 2023 Exams
Misc 9 Important
Misc 10 Deleted for CBSE Board 2023 Exams
Misc 11 Important Deleted for CBSE Board 2023 Exams
Misc 12 Important Deleted for CBSE Board 2023 Exams
Misc 13 Important Deleted for CBSE Board 2023 Exams
Misc 14 Important Deleted for CBSE Board 2023 Exams
Misc 15 Important Deleted for CBSE Board 2023 Exams
Misc 16 Deleted for CBSE Board 2023 Exams
Misc 17 Important Deleted for CBSE Board 2023 Exams
Misc 18 Important Deleted for CBSE Board 2023 Exams
Misc 19 Deleted for CBSE Board 2023 Exams You are here
Misc 20 Important
Misc 21 Important Deleted for CBSE Board 2023 Exams
Misc 22 (MCQ) Important Deleted for CBSE Board 2023 Exams
Misc 23 (MCQ) Important Deleted for CBSE Board 2023 Exams
Miscellaneous
Last updated at March 22, 2023 by Teachoo
Misc 19 (Method 1) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes 𝑟 ⃗ . (𝑖 ̂ − 𝑗 ̂ + 2 𝑘 ̂) = 5 and 𝑟 ⃗ . (3𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂) = 6 . The vector equation of a line passing through a point with position vector 𝑎 ⃗ and parallel to a vector 𝑏 ⃗ is 𝒓 ⃗ = 𝒂 ⃗ + 𝜆𝒃 ⃗ Given, the line passes through (1, 2, 3) So, 𝑎 ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ Given, line is parallel to both planes ∴ Line is perpendicular to normal of both planes. i.e. 𝑏 ⃗ is perpendicular to normal of both planes. The vector equation of a line passing through a point with position vector 𝑎 ⃗ and parallel to a vector 𝑏 ⃗ is 𝒓 ⃗ = 𝒂 ⃗ + 𝜆𝒃 ⃗ Given, the line passes through (1, 2, 3) So, 𝑎 ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ Given, line is parallel to both planes ∴ Line is perpendicular to normal of both planes. i.e. 𝑏 ⃗ is perpendicular to normal of both planes. We know that 𝑎 ⃗ × 𝑏 ⃗ is perpendicular to both 𝑎 ⃗ & 𝑏 ⃗ So, 𝑏 ⃗ is cross product of normal of planes 𝑟 ⃗ . (𝑖 ̂ − 𝑗 ̂ + 2 𝑘 ̂) = 5 and 𝑟 ⃗ . (3𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂) = 6 Required normal = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@1&−1&[email protected]&1&1)| = 𝑖 ̂ (–1(1) – 1(2)) – 𝑗 ̂ (1(1) – 3(2)) + 𝑘 ̂(1(1) – 3(–1)) = 𝑖 ̂ (–1 – 2) – 𝑗 ̂ (1 – 6) + 𝑘 ̂(1 + 3) = –3𝑖 ̂ + 5𝑗 ̂ + 4𝑘 ̂ Thus, 𝑏 ⃗ = −3𝑖 ̂ + 5𝑗 ̂ + 4𝑘 ̂ Now, Putting value of 𝑎 ⃗ & 𝑏 ⃗ in formula 𝑟 ⃗ = 𝑎 ⃗ + 𝜆𝑏 ⃗ = (𝒊 ̂ + 2𝒋 ̂ + 3𝒌 ̂) + 𝜆 (−3𝒊 ̂ + 5𝒋 ̂ + 4𝒌 ̂) Now, Putting value of 𝑎 ⃗ & 𝑏 ⃗ in formula 𝑟 ⃗ = 𝑎 ⃗ + 𝜆𝑏 ⃗ = (𝒊 ̂ + 2𝒋 ̂ + 3𝒌 ̂) + 𝜆 (−3𝒊 ̂ + 5𝒋 ̂ + 4𝒌 ̂) Misc 19 (Method 2) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes 𝑟 ⃗ . (𝑖 ̂ − 𝑗 ̂ + 2 𝑘 ̂) = 5 and 𝑟 ⃗ . (3𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂) = 6 . The vector equation of a line passing through a point with position vector 𝑎 ⃗ and parallel to a vector 𝑏 ⃗ is 𝒓 ⃗ = 𝒂 ⃗ + 𝜆𝒃 ⃗ Given, the line passes through (1, 2, 3) So, 𝑎 ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ Let 𝑏 ⃗ = 𝑏_1 𝑖 ̂ + 𝑏_2 𝑗 ̂ + 𝑏_3 𝑘 ̂ A line parallel to a plane is perpendicular to the normal of the plane. And two lines 𝑝 ⃗ and 𝑞 ⃗ are perpendicular if 𝑝 ⃗.𝑞 ⃗ = 0 Given, the line is parallel to planes 𝒓 ⃗.(𝒊 ̂ − 𝒋 ̂ + 2𝒌 ̂) = 5 Comparing with 𝑟 ⃗. (𝑛1) ⃗ = d1, (𝑛1) ⃗ = 1𝑖 ̂ − 1𝑗 ̂ + 2𝑘 ̂ Since 𝑏 ⃗ is ⊥ to (𝑛1) ⃗, 𝑏 ⃗.(𝑛1) ⃗ = 0 (𝑏1𝑖 ̂ + 𝑏2 𝑗 ̂ + 𝑏3 𝑘 ̂).(1𝑖 ̂ − 1𝑗 ̂ + 2𝑘 ̂) = 0 (𝑏"1"× 1) + (𝑏"2"× −1) + (𝑏3 × 2) = 0 𝒃1 − 𝒃2 + 2𝒃3 = 0 𝒓 ⃗.(3𝒊 ̂ + 𝒋 ̂ + 𝒌 ̂) = 6 Comparing with 𝑟 ⃗. (𝑛2) ⃗ = d2, (𝑛2) ⃗ = 3𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂ Since 𝑏 ⃗ is ⊥ to (𝑛2) ⃗, 𝑏 ⃗.(𝑛2) ⃗ = 0 (𝑏1 𝑖 ̂ + 𝑏2 𝑗 ̂ + 𝑏3 𝑘 ̂).(3𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂) = 0 (𝑏1 × 3) + (𝑏2 × 1) + (𝑏3 × 1) = 0 3𝒃1 + 𝒃2 + 𝒃3 = 0 So, our equations are 𝑏1 − 𝑏2 + 2𝑏3 = 0 3𝑏1 + 𝑏2 + 𝑏3 = 0 Thus, 𝑏 ⃗ = 𝑏_1 𝑖 ̂ + 𝑏_2 𝑗 ̂ + 𝑏_3 𝑘 ̂ = −3k𝑖 ̂ + 5k𝑗 ̂ + 4k𝑘 ̂ Now, Putting value of 𝑎 ⃗ & 𝑏 ⃗ in formula 𝑟 ⃗ = 𝑎 ⃗ + 𝜆𝑏 ⃗ ∴ 𝑟 ⃗ = (1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) + 𝜆 (−3k𝑖 ̂ + 5k𝑗 ̂ + 4k𝑘 ̂) = (𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) + 𝜆k (−3𝑖 ̂ + 5𝑗 ̂ + 4𝑘 ̂) = (𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) + 𝜆 (−3𝑖 ̂ + 5𝑗 ̂ + 4𝑘 ̂) Therefore, the equation of the line is (𝒊 ̂ + 2𝒋 ̂ + 3𝒌 ̂) + 𝜆 (−3𝒊 ̂ + 5𝒋 ̂ + 4𝒌 ̂).