Subscribe to our Youtube Channel - https://www.youtube.com/channel/UCZBx269Tl5Os5NHlSbVX4Kg

Slide72.JPG

Slide73.JPG
Slide74.JPG Slide75.JPG Slide76.JPG Slide77.JPG Slide78.JPG

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

Transcript

Misc 19 (Method 1) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes ๐‘Ÿ โƒ— . (๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 2 ๐‘˜ ฬ‚) = 5 and ๐‘Ÿ โƒ— . (3๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 6 . The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— Given, the line passes through (1, 2, 3) So, ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ Given, line is parallel to both planes โˆด Line is perpendicular to normal of both planes. i.e. ๐‘ โƒ— is perpendicular to normal of both planes. The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— Given, the line passes through (1, 2, 3) So, ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ Given, line is parallel to both planes โˆด Line is perpendicular to normal of both planes. i.e. ๐‘ โƒ— is perpendicular to normal of both planes. We know that ๐‘Ž โƒ— ร— ๐‘ โƒ— is perpendicular to both ๐‘Ž โƒ— & ๐‘ โƒ— So, ๐‘ โƒ— is cross product of normal of planes ๐‘Ÿ โƒ— . (๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 2 ๐‘˜ ฬ‚) = 5 and ๐‘Ÿ โƒ— . (3๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 6 Required normal = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@1&โˆ’1&2@3&1&1)| = ๐‘– ฬ‚ (โ€“1(1) โ€“ 1(2)) โ€“ ๐‘— ฬ‚ (1(1) โ€“ 3(2)) + ๐‘˜ ฬ‚(1(1) โ€“ 3(โ€“1)) = ๐‘– ฬ‚ (โ€“1 โ€“ 2) โ€“ ๐‘— ฬ‚ (1 โ€“ 6) + ๐‘˜ ฬ‚(1 + 3) = โ€“3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚ Thus, ๐‘ โƒ— = โˆ’3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚ Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— = (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) + ๐œ† (โˆ’3๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 4๐’Œ ฬ‚) Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— = (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) + ๐œ† (โˆ’3๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 4๐’Œ ฬ‚) Misc 19 (Method 2) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes ๐‘Ÿ โƒ— . (๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 2 ๐‘˜ ฬ‚) = 5 and ๐‘Ÿ โƒ— . (3๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 6 . The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— Given, the line passes through (1, 2, 3) So, ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ Let ๐‘ โƒ— = ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ + ๐‘_3 ๐‘˜ ฬ‚ A line parallel to a plane is perpendicular to the normal of the plane. And two lines ๐‘ โƒ— and ๐‘ž โƒ— are perpendicular if ๐‘ โƒ—.๐‘ž โƒ— = 0 Given, the line is parallel to planes ๐’“ โƒ—.(๐’Š ฬ‚ โˆ’ ๐’‹ ฬ‚ + 2๐’Œ ฬ‚) = 5 Comparing with ๐‘Ÿ โƒ—. (๐‘›1) โƒ— = d1, (๐‘›1) โƒ— = 1๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ + 2๐‘˜ ฬ‚ Since ๐‘ โƒ— is โŠฅ to (๐‘›1) โƒ—, ๐‘ โƒ—.(๐‘›1) โƒ— = 0 (๐‘1๐‘– ฬ‚ + ๐‘2 ๐‘— ฬ‚ + ๐‘3 ๐‘˜ ฬ‚).(1๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ + 2๐‘˜ ฬ‚) = 0 (๐‘"1"ร— 1) + (๐‘"2"ร— โˆ’1) + (๐‘3 ร— 2) = 0 ๐’ƒ1 โˆ’ ๐’ƒ2 + 2๐’ƒ3 = 0 ๐’“ โƒ—.(3๐’Š ฬ‚ + ๐’‹ ฬ‚ + ๐’Œ ฬ‚) = 6 Comparing with ๐‘Ÿ โƒ—. (๐‘›2) โƒ— = d2, (๐‘›2) โƒ— = 3๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚ Since ๐‘ โƒ— is โŠฅ to (๐‘›2) โƒ—, ๐‘ โƒ—.(๐‘›2) โƒ— = 0 (๐‘1 ๐‘– ฬ‚ + ๐‘2 ๐‘— ฬ‚ + ๐‘3 ๐‘˜ ฬ‚).(3๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚) = 0 (๐‘1 ร— 3) + (๐‘2 ร— 1) + (๐‘3 ร— 1) = 0 3๐’ƒ1 + ๐’ƒ2 + ๐’ƒ3 = 0 So, our equations are ๐‘1 โˆ’ ๐‘2 + 2๐‘3 = 0 3๐‘1 + ๐‘2 + ๐‘3 = 0 Thus, ๐‘ โƒ— = ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ + ๐‘_3 ๐‘˜ ฬ‚ = โˆ’3k๐‘– ฬ‚ + 5k๐‘— ฬ‚ + 4k๐‘˜ ฬ‚ Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— โˆด ๐‘Ÿ โƒ— = (1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) + ๐œ† (โˆ’3k๐‘– ฬ‚ + 5k๐‘— ฬ‚ + 4k๐‘˜ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) + ๐œ†k (โˆ’3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) + ๐œ† (โˆ’3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚) Therefore, the equation of the line is (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) + ๐œ† (โˆ’3๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 4๐’Œ ฬ‚).

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.