



Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5 Important
Misc 6 Important
Misc 7 Deleted for CBSE Board 2023 Exams
Misc 8 Important Deleted for CBSE Board 2023 Exams
Misc 9 Important
Misc 10 Deleted for CBSE Board 2023 Exams You are here
Misc 11 Important Deleted for CBSE Board 2023 Exams
Misc 12 Important Deleted for CBSE Board 2023 Exams
Misc 13 Important Deleted for CBSE Board 2023 Exams
Misc 14 Important Deleted for CBSE Board 2023 Exams
Misc 15 Important Deleted for CBSE Board 2023 Exams
Misc 16 Deleted for CBSE Board 2023 Exams
Misc 17 Important Deleted for CBSE Board 2023 Exams
Misc 18 Important Deleted for CBSE Board 2023 Exams
Misc 19 Deleted for CBSE Board 2023 Exams
Misc 20 Important
Misc 21 Important Deleted for CBSE Board 2023 Exams
Misc 22 (MCQ) Important Deleted for CBSE Board 2023 Exams
Misc 23 (MCQ) Important Deleted for CBSE Board 2023 Exams
Miscellaneous
Last updated at March 16, 2023 by Teachoo
Misc 10 (Method 1) Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane.The equation of a line passing through two points with position vectors 𝑎 ⃗ & 𝑏 ⃗ is 𝒓 ⃗ = 𝒂 ⃗ + 𝜆(𝒃 ⃗ − 𝒂 ⃗) Given, the line passes through (𝑏 ⃗ − 𝑎 ⃗) = (3𝑖 ̂ + 4𝑗 ̂ + 1𝑘 ̂) − (5𝑖 ̂ + 1𝑗 ̂ + 6𝑘 ̂) = (3 −5)𝑖 ̂ + (4 − 1)𝑗 ̂ + (1 − 6)𝑘 ̂ = −2𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂ The equation of a line passing through two points with position vectors 𝑎 ⃗ & 𝑏 ⃗ is 𝒓 ⃗ = 𝒂 ⃗ + 𝜆(𝒃 ⃗ − 𝒂 ⃗) Given, the line passes through (𝑏 ⃗ − 𝑎 ⃗) = (3𝑖 ̂ + 4𝑗 ̂ + 1𝑘 ̂) − (5𝑖 ̂ + 1𝑗 ̂ + 6𝑘 ̂) = (3 −5)𝑖 ̂ + (4 − 1)𝑗 ̂ + (1 − 6)𝑘 ̂ = −2𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂ B(3, 4, 1) 𝑏 ⃗ = 3𝑖 ̂ + 4𝑗 ̂ + 1𝑘 ̂ ∴ 𝒓 ⃗ = (5𝒊 ̂ + 𝒋 ̂ + 6𝒌 ̂) + 𝜆 (−2𝒊 ̂ + 3𝒋 ̂ − 5𝒌 ̂) Let the coordinates of the point where the line crosses the YZ plane be (0, y, z) So, 𝒓 ⃗ = 0𝒊 ̂ + y𝒋 ̂ + z𝒌 ̂ Since point lies in line, it will satisfy its equation, Putting (2) in (1) 0𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂ = 5𝑖 ̂ + 𝑗 ̂ + 6𝑘 ̂ −2𝜆𝑖 ̂ + 3𝜆𝑗 ̂ − 5𝜆𝑘 ̂ 0𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂ = (5 −2𝜆)𝑖 ̂ + (1 + 3𝜆)𝑗 ̂ + (6 − 5𝜆)𝑘 ̂ Two vectors are equal if their corresponding components are equal So, Solving 0 = 5 − 2𝜆 5 = 2𝜆 ∴ 𝜆 = 𝟓/𝟐 Now, y = 1 + 3𝜆 = 1 + 3 × 5/2 = 1 + 15/2 = 17/2 & z = 6 − 5𝜆 = 6 − 5 × 5/2 = 6 − 25/2 = (−13)/2 Therefore, the coordinates of the required point is (𝟎,𝟏𝟕/𝟐, (−𝟏𝟑)/𝟐). Misc 10 (Method 2) Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane.The equation of a line passing through two points A(𝑥_1, 𝑦_1, 𝑧_1) and B(𝑥_2, 𝑦_2, 𝑧_2) is (𝒙 − 𝒙_𝟏)/(𝒙_𝟐 − 𝒙_𝟏 ) = (𝒚 − 𝒚_𝟏)/(𝒚_𝟐 − 𝒚_𝟏 ) = (𝒛 − 𝒛_𝟏)/(𝒛_𝟐 − 𝒛_𝟏 ) Given the line passes through the points So, the equation of line is (𝑥 − 5)/(3 − 5) = (𝑦 − 1)/(4 − 1) = (𝑧 − 6)/(1 − 6) A (5, 1, 6) ∴ 𝑥_1= 5, 𝑦_1= 1, 𝑧_1= 6 B(3, 4, 1) ∴ 𝑥_2= 3, 𝑦_2= 4, 𝑧_2= 1 (𝒙 − 𝟓)/(−𝟐) = (𝒚 − 𝟏)/𝟑 = (𝒛 − 𝟔)/(−𝟓) = k So, Since the line crosses the YZ plane at (0, y, z) x = 0 −2k + 5 = 0 2k = 5 k = 𝟓/𝟐 x = –2k + 5 So, x = −2k + 5 = −2 × 5/2 + 5 = − 10/2 + 5 = 0 y = 3k + 1 = 3 × 5/2 + 1 = 15/2 + 1 = 17/2 & z = −5k + 6 = −5 × 5/2 + 6 = (−25)/2 + 6 = (−13)/2 Therefore, the coordinates of the required point are (𝟎,𝟏𝟕/𝟐,(−𝟏𝟑)/𝟐).