Last updated at Aug. 25, 2017 by Teachoo

Transcript

Misc 13 (Method 1) Find the equation of the plane passing through the point (– 1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0. The equation of a plane passing through ( 𝑥1, 𝑦1, 𝑧1) is given by A(x − 𝒙𝟏) + B (y − 𝒚𝟏) + C(z – 𝒛𝟏) = 0 where, A, B, C are the direction ratios of normal to the plane. Now the plane passes through (–1, 3, 2) So, equation of plane is A(x + 1) + B (y – 3) + C(z − 2) = 0 We find the direction ratios of normal to plane i.e. A, B, C Also, the plane is perpendicular to the given two planes. So, their normal to plane would be perpendicular to normals of both planes. We know that 𝑎 × 𝑏 is perpendicular to both 𝑎 & 𝑏 So, required is normal is cross product of normals of planes x + 2y + 3z = 5 and 3x + 3y + z = 0 Required normal = 𝑖 𝑗 𝑘123331 = 𝑖 (2(1) – 3(3)) – 𝑗 (1(1) – 3(3)) + 𝑘(1(3) – 3(2)) = 𝑖 (2 – 9) – 𝑗 (1 – 9) + 𝑘(3 – 6) = –7 𝑖 + 8 𝑗 – 3 𝑘 Hence, direction ratios = –7, 8, –3 ∴ A = –7, B = 8, C = –3 Putting above values in (1) A(x + 1) + B (y – 3) + C(z − 2) = 0 −7k (x + 1) + 8k (y − 3) − 3k (z −2) = 0 k −7 𝑥+1+8 𝑦−3−3(𝑧−2) = 0 −7(x + 1) + 8(y − 3) − 3(z − 2) = 0 −7x − 7 + 8y − 24 − 3z + 6 = 0 −7x + 8y −3z − 25 = 0 0 = 7x – 8y + 3z + 25 7x – 8y + 3z + 25 = 0 Therefore equation of the required plane is 7x – 8y + 3z + 25 = 0 Misc 13 (Method 2) Find the equation of the plane passing through the point (– 1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0. The equation of a plane passing through ( 𝑥1, 𝑦1, 𝑧1) is given by A(x − 𝒙𝟏) + B (y − 𝒚𝟏) + C(z – 𝒛𝟏) = 0 where, A, B, C are the direction ratios of normal to the plane. Now the plane passes through (–1, 3, 2) So, equation of plane is A(x + 1) + B (y – 3) + C(z − 2) = 0 We find the direction ratios of normal to plane i.e. A, B, C Also, the plane is perpendicular to the given two planes. Now, it is given that plane A(x + 1) + B (y – 3) + C(z − 2) = 0 is perpendicular to plane x + 2y + 3z = 5 Hence, A × 1 + B × 2 + C × 3 = 0 A + 2B + 3C = 0 Similarly, Given that plane A(x + 1) + B (y – 3) + C(z − 2) = 0 is perpendicular to plane 3x + 3y + z = 0. Hence, A × 3 + B × 3 + C × 1 = 0 3A + 3B + C = 0 So, our equations are A + 2B + 3C = 0 3A + 3B + C = 0 Solving 𝐴2 − 9 = 𝐵9 − 1 = 𝐶3 − 6 𝑨−𝟕 = 𝑩𝟖 = 𝑪−𝟑 = k So, A = −7k, B = 8k, C = −3k Putting above values in (1) A(x + 1) + B (y – 3) + C(z − 2) = 0 −7k (x + 1) + 8k (y − 3) − 3k (z −2) = 0 k −7 𝑥+1+8 𝑦−3−3(𝑧−2) = 0 −7(x + 1) + 8(y − 3) − 3(z − 2) = 0 −7x − 7 + 8y − 24 − 3z + 6 = 0 −7x + 8y −3z − 25 = 0 0 = 7x – 8y + 3z + 25 7x – 8y + 3z + 25 = 0 Therefore equation of the required plane is 7x – 8y + 3z + 25 = 0

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 7 years. He provides courses for Mathematics and Science from Class 6 to 12. You can learn personally from here https://www.teachoo.com/premium/maths-and-science-classes/.