


Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Feb. 1, 2020 by Teachoo
Transcript
Misc 5 If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (โ 4, 3, โ 6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.Angle between a pair of lines having direction ratios ๐1, ๐1, c1 and ๐_2 , ๐_2, ๐_2 is given by cos ฮธ = |(๐_๐ ๐_๐ + ๐_๐ ๐_๐ + ๐๐๐๐)/(โ(ใ๐_๐ใ^๐ + ใ๐_๐ใ^๐+ใ ๐_๐ใ^๐ ) โ(ใ๐_๐ใ^๐ + ใ๐_๐ใ^๐+ใ ๐_๐ใ^๐ ))| A line passing through A (๐ฅ_1, ๐ฆ_1, ๐ง_1) and B (๐ฅ_2, ๐ฆ_2, ๐ง_2) has direction ratios (๐ฅ_2 โ ๐ฅ_1), (๐ฆ_2 โ ๐ฆ_1), (๐ง_2 โ ๐ง_1) AB A (1, 2, 3) , B (4, 5, 7) Direction ratios of AB (4 โ 1), (5 โ 2),(7 โ 3) = 3, 3, 4 โด ๐1 = 3, ๐1 = 3, ๐1 = 4 CD C (โ4, 3, โ6) ,D (2, 9, 2) Direction ratios of CD (2 โ (โ4)), (9 โ 3),(2 โ (โ6)) = 6, 6, 8 โด ๐2 = 6, ๐2 = 6, ๐2 = 8 Now, cos ฮธ = |(๐_1 ๐_2 + ๐_1 ๐_2 + ๐1๐2)/(โ(ใ๐_1ใ^2 + ใ๐_1ใ^2+ใ ๐_1ใ^2 ) โ(ใ๐_2ใ^2 + ใ๐_2ใ^2+ใ ๐_2ใ^2 ))| cos ฮธ = |(3 ร 6 + 3 ร 6 + 4 ร 8 )/(โ(32 + 32 + 42) โ(62 + 62 + 82))| = |(18 + 18 + 32 )/(โ(9 + 9 + 16) โ(36 + 36 + 64))| = |68/(โ34 โ136)| = |68/(โ34 โ(4 ร 34))| = |68/(โ34 ร โ4 ร โ34)| = |68/(โ34 ร โ34ร โ4)| = |68/(34 ร 2 )| = |68/68| = 1 โด cos ฮธ = 1 So, ฮธ = 0ยฐ Therefore, angle between AB and CD is 0ยฐ .
Miscellaneous
Misc 2
Misc 3 Deleted for CBSE Board 2021 Exams only
Misc 4 Important
Misc 5 Important Deleted for CBSE Board 2021 Exams only You are here
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21 Important
Misc 22 Important
Misc 23 Important
About the Author