


Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Feb. 4, 2020 by Teachoo
Transcript
Misc 9 Find the shortest distance between lines π β = 6π Μ + 2π Μ + 2π Μ + π (π Μ β 2π Μ + 2π Μ) and π β = β4π Μ β π Μ + π (3π Μ β 2π Μ β 2π Μ) .Shortest distance between lines with vector equations π β = (π1) β + π (π1) β and π β = (π2) β + π(π2) β is |(((ππ) β Γ (ππ) β ).((ππ) β β (ππ) β ))/|(ππ) β Γ (ππ) β | | π β = (6π Μ + 2π Μ + 2π Μ) + π (π Μ β 2π Μ + 2π Μ) Comparing with π β = (π1) β + π(π1) β , (π1) β = 6π Μ + 2π Μ + 2π Μ & (π1) β = 1π Μ β 2π Μ + 2π Μ π β = (β4π Μ β π Μ) + π (3π Μ β 2π Μ β 2π Μ) Comparing with π β = (π2) β + π(π2) β , (π2) β = β 4π Μ + 0π Μ β 1π Μ & (π2) β = 3π Μ β 2π Μ β 2π Μ Now, ((ππ) β β (ππ) β) = (β4π Μ + 0π Μ β 1π Μ) β (6π Μ + 2π Μ + 2π Μ) = (β4 β 6) π Μ + (0 β 2)π Μ + (β1 β 2) π Μ = β 10π Μ β 2π Μ β 3π Μ ((ππ) β Γ (ππ) β) = |β 8(π Μ&π Μ&π Μ@1& β2&2@3&β2&β2)| = π Μ [(β2Γβ2)β(β2Γ2)] β π Μ [(1Γβ2)β(3Γ2)] + π Μ [(1Γβ2)β(3Γβ2)] = π Μ [ 4+4] β π Μ [β2β6] + π Μ [β2+6] = π Μ (8) β π Μ (β8) + π Μ(4) = 8π Μ + 8π Μ + 4π Μ Magnitude of (π1) β Γ (π2) β = β(8^2+8^2+4^2 ) |(ππ) β Γ (ππ) β | = β(64+64+16) = β144 = ππ Also, ((ππ) βΓ(ππ) β ) . ((ππ) β β (ππ) β ) = (8π Μ + 8π Μ + 4π Μ).(β 10π Μ β 2π Μ β 3π Μ) = (8 Γ β 10) + (8 Γ β 2) + (4 Γ β 3) = β 80 + (β16) + (-12) = β 108 Shortest distance = |(((π1) β Γ (π2) β ) . ((π2) β β (π1) β ))/|(π1) β Γ (π2) β | | = |( β108)/12| = |β9| = 9 Therefore, the shortest distance between the given two lines is 9.
Miscellaneous
Misc 2
Misc 3 Not in Syllabus - CBSE Exams 2021
Misc 4 Important
Misc 5 Important Not in Syllabus - CBSE Exams 2021
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important You are here
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21 Important
Misc 22 Important
Misc 23 Important
About the Author