






Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Miscellaneous
Misc 1 (ii) Important
Misc 2 Important
Misc 3 Important
Misc 4 (MCQ)
Misc 5 (MCQ) Important
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams You are here
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 (MCQ) Deleted for CBSE Board 2024 Exams
Question 14 (MCQ) Important Deleted for CBSE Board 2024 Exams
Miscellaneous
Last updated at May 29, 2023 by Teachoo
Question 3 Find the area enclosed between the parabola π¦2=4ππ₯ and the line π¦=ππ₯ Letβs first draw the Figure Here, π¦2 =4ax is a Parabola And, π¦=ππ₯ is a straight line Let A be point of intersection of line and parabola Finding point A Putting y = mx in equation of parabola π¦^2=4ππ₯ (ππ₯)^2=4ππ₯ π^2 π₯^2=4ππ₯ π^2 π₯^2β4ππ₯=0 π₯(π^2 π₯β4π)=0 Therefore, π₯=0 π^2 π₯β4π=0 π^2 π₯=4π π₯=4π/π^2 Putting values of π₯ in π¦=ππ₯ π¦=π Γ0=0 π¦=π Γ4π/π^2 =4π/π So, the intersecting points are O(π , π) and A (ππ/π^π ,ππ/π) Finding Area Area Required = Area OBAD β Area OAD Area OBAD Area OBAD = β«_0^(4π/π^2 )βγπ¦ ππ₯" " γ y β Equation of parabola π¦^2 = 4ax π¦ = Β± β("4" ππ₯) Since OBAD is in 1st quadrant, value of y is positive β΄ y = β("4" ππ₯) Now, Area OBAD =β«_0^(4π/π^2 )βγβ4ππ₯ ππ₯" " γ =β«_0^(4π/π^2 )βγβ4π .βπ₯ ππ₯" " γ =β4π β«_0^(4π/π^2 )βγβπ₯ ππ₯" " γ =2βπ [π₯^(1/2 + 1)/(1/2 + 1)]_0^(4π/π^2 ) =β4π [π₯^(3/2)/(3/2)]_0^(4π/π^2 ) =β4π Γ 2/3 [π₯^(3/2) ]_0^(4π/π^2 ) =(2(2βπ))/3 [(4π/π^2 )^(3/2)β(0)^(3/2) ] =(4βπ)/3 [4π/π^2 β(4π/π^2 )β0] =(4βπ)/3 [4π/π^2 Γ(2βπ)/π] =(32 π .βπ .βπ)/(3π^3 ) =(32 π^2)/(3π^3 ) Area OAD Area OAD = β«1_0^(4π/π^2 )βγπ¦ ππ₯γ y β Equation of line y = mx Therefore, Area OAD = β«1_0^(4π/π^2 )βγ"m" π₯ ππ₯γ = mβ«1_0^(4π/π^2 )βγπ₯ ππ₯γ = π[π₯^2/2]_0^(4π/π^2 ) = π[π₯^2/2]_0^(4π/π^2 ) =π/2 [(4π/π^2 )^2β0^2 ] =π/2 (4π)^2/π^4 =(8π^2)/π^3 Thus, Area Required = Area OBAD β Area OAD = (32 π^2)/(3π^3 ) β (8π^2)/π^3 = ((32 β 24) π^2)/(3π^3 ) = (ππ^π)/γππγ^π