# Example 31 - Chapter 4 Class 12 Determinants (Term 1)

Last updated at Jan. 23, 2020 by Teachoo

Examples

Example 1

Example 2

Example 3

Example 4

Example 5 Important

Example 6 Deleted for CBSE Board 2023 Exams

Example 7 Deleted for CBSE Board 2023 Exams

Example 8 Deleted for CBSE Board 2023 Exams

Example 9 Important Deleted for CBSE Board 2023 Exams

Example 10 Important Deleted for CBSE Board 2023 Exams

Example 11 Deleted for CBSE Board 2023 Exams

Example 12 Deleted for CBSE Board 2023 Exams

Example 13 Deleted for CBSE Board 2023 Exams

Example 14 Important Deleted for CBSE Board 2023 Exams

Example 15 Important Deleted for CBSE Board 2023 Exams

Example 16 Important Deleted for CBSE Board 2023 Exams

Example 17

Example 18 Important

Example 19

Example 20

Example 21

Example 22 Important

Example 23

Example 24 Important

Example 25

Example 26 Important

Example 27

Example 28 Important

Example 29

Example 30

Example 31 Important Deleted for CBSE Board 2023 Exams You are here

Example 32 Important Deleted for CBSE Board 2023 Exams

Example 33 Important

Example 34 Important Deleted for CBSE Board 2023 Exams

Chapter 4 Class 12 Determinants

Serial order wise

Last updated at Jan. 23, 2020 by Teachoo

Example 31 (Method 1) If a, b, c, are in A.P, find value of |■8(2y+4&5y+7&[email protected]+5&6y+8&[email protected]+6&7y+9&10y+c)| Given a, b & c are in A.P Then, b – a = c – b b – a – c + b = 0 2b – a – c = 0 Solving (Common difference is equal) |■8(2y+4&5y+7&[email protected]+5&6y+8&[email protected]+6&7y+9&10y+c)| Multiply & Divide by 2 = 2/2 |■8(2y+4&5y+7&[email protected]+5&6y+8&[email protected]+6&7y+9&10y+c)| Multiplying 2 to R2 = 1/2 |■8(2y+4&5y+7&[email protected]𝟐(3y+5)&𝟐(6y+8)&𝟐(9y+b)@4y+6&7y+9&10y+c)| = 1/2 |■8(2y+4&5y+7&[email protected]+10&12y+16&[email protected]+6&7y+9&10y+c)| Applying R2 →R2 – R1 – R3 = 1/2 |■8(2y+4&5y+7&[email protected]+10−(2𝑦+4)−(4𝑦+6)&12y+16−(5𝑦+7)−(7𝑦+9)&18y+2b−(8y+a)−(10y+c)@4y+6&7y+9&10y+c)| = 1/2 |■8(2y+4&5y+7&[email protected]+10−2𝑦−4−4𝑦−6&12y+16−5𝑦−7−7𝑦−9&18y+2b−2𝑦−𝑎−10𝑦−𝑐@4y+6&7y+9&10y+c)| = 1/2 |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@0&0&𝟐𝒃−𝒂−𝒄@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = 1/2 |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@0&0&𝟎@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = 1/2 × 0 = 0 Thus, the value of determinant is 0 (From (1): 2b – a – c = 0) If any row or column of determinant are zero, then value of determinant is also zero. Example 31 (Method 2) If a, b, c, are in A.P, find value of |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| Given a, b & C are in A.P Then b – a = c – b b + b = a + c 2b = a + c (Common difference is equal) Consider |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| Applying R1 → R1 + R3 – 2R2 = |■8(2𝑦+4+(4𝑦+6)−2(3𝑦+5)&5𝑦+7+(7𝑦+9)−2(6𝑦+8)&8𝑦+𝑎+(10𝑦+𝑐)−2(9𝑦+𝑏)@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(2𝑦+4+4𝑦+6−6𝑦−10&5𝑦+7+7𝑦+9−12𝑦−16&8𝑦+𝑎+10𝑦+𝑐−18𝑦−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(6𝑦−6𝑦+10−10&12𝑦−12𝑦+16−16&18𝑦−18𝑦+𝑎+𝑐−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&𝒂+𝒄−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&𝟐𝒃−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&[email protected]𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| If any row or column of determinant are zero, then value of determinant is also zero. = 0 Hence, value of determinant is 0 (From (1): 2b = a + c)