




Now learn Economics at Teachoo for Class 12
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6 Deleted for CBSE Board 2022 Exams
Example 7 Deleted for CBSE Board 2022 Exams
Example 8 Deleted for CBSE Board 2022 Exams
Example 9 Important Deleted for CBSE Board 2022 Exams
Example 10 Important Deleted for CBSE Board 2022 Exams
Example 11 Deleted for CBSE Board 2022 Exams
Example 12 Deleted for CBSE Board 2022 Exams
Example 13 Deleted for CBSE Board 2022 Exams
Example 14 Important Deleted for CBSE Board 2022 Exams
Example 15 Important Deleted for CBSE Board 2022 Exams
Example 16 Important Deleted for CBSE Board 2022 Exams
Example 17
Example 18 Important
Example 19
Example 20
Example 21
Example 22 Important
Example 23
Example 24 Important
Example 25
Example 26 Important
Example 27
Example 28 Important
Example 29
Example 30 Deleted for CBSE Board 2022 Exams
Example 31 Important Deleted for CBSE Board 2022 Exams You are here
Example 32 Important Deleted for CBSE Board 2022 Exams
Example 33 Important
Example 34 Important Deleted for CBSE Board 2022 Exams
Last updated at Jan. 23, 2020 by Teachoo
Example 31 (Method 1) If a, b, c, are in A.P, find value of |■8(2y+4&5y+7&8y+a@3y+5&6y+8&9y+b@4y+6&7y+9&10y+c)| Given a, b & c are in A.P Then, b – a = c – b b – a – c + b = 0 2b – a – c = 0 Solving (Common difference is equal) |■8(2y+4&5y+7&8y+a@3y+5&6y+8&9y+b@4y+6&7y+9&10y+c)| Multiply & Divide by 2 = 2/2 |■8(2y+4&5y+7&8y+a@3y+5&6y+8&9y+b@4y+6&7y+9&10y+c)| Multiplying 2 to R2 = 1/2 |■8(2y+4&5y+7&8y+a@𝟐(3y+5)&𝟐(6y+8)&𝟐(9y+b)@4y+6&7y+9&10y+c)| = 1/2 |■8(2y+4&5y+7&8y+a@6y+10&12y+16&18y+2b@4y+6&7y+9&10y+c)| Applying R2 →R2 – R1 – R3 = 1/2 |■8(2y+4&5y+7&8y+a@6y+10−(2𝑦+4)−(4𝑦+6)&12y+16−(5𝑦+7)−(7𝑦+9)&18y+2b−(8y+a)−(10y+c)@4y+6&7y+9&10y+c)| = 1/2 |■8(2y+4&5y+7&8y+a@6y+10−2𝑦−4−4𝑦−6&12y+16−5𝑦−7−7𝑦−9&18y+2b−2𝑦−𝑎−10𝑦−𝑐@4y+6&7y+9&10y+c)| = 1/2 |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@0&0&𝟐𝒃−𝒂−𝒄@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = 1/2 |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@0&0&𝟎@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = 1/2 × 0 = 0 Thus, the value of determinant is 0 (From (1): 2b – a – c = 0) If any row or column of determinant are zero, then value of determinant is also zero. Example 31 (Method 2) If a, b, c, are in A.P, find value of |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| Given a, b & C are in A.P Then b – a = c – b b + b = a + c 2b = a + c (Common difference is equal) Consider |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| Applying R1 → R1 + R3 – 2R2 = |■8(2𝑦+4+(4𝑦+6)−2(3𝑦+5)&5𝑦+7+(7𝑦+9)−2(6𝑦+8)&8𝑦+𝑎+(10𝑦+𝑐)−2(9𝑦+𝑏)@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(2𝑦+4+4𝑦+6−6𝑦−10&5𝑦+7+7𝑦+9−12𝑦−16&8𝑦+𝑎+10𝑦+𝑐−18𝑦−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(6𝑦−6𝑦+10−10&12𝑦−12𝑦+16−16&18𝑦−18𝑦+𝑎+𝑐−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&𝒂+𝒄−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&𝟐𝒃−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&0@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| If any row or column of determinant are zero, then value of determinant is also zero. = 0 Hence, value of determinant is 0 (From (1): 2b = a + c)