Get live Maths 1-on-1 Classs - Class 6 to 12

Examples

Example 1

Example 2

Example 3

Example 4

Example 5 Important

Example 6 Deleted for CBSE Board 2023 Exams

Example 7 Deleted for CBSE Board 2023 Exams

Example 8 Deleted for CBSE Board 2023 Exams

Example 9 Important Deleted for CBSE Board 2023 Exams

Example 10 Important Deleted for CBSE Board 2023 Exams

Example 11 Deleted for CBSE Board 2023 Exams

Example 12 Deleted for CBSE Board 2023 Exams

Example 13 Deleted for CBSE Board 2023 Exams

Example 14 Important Deleted for CBSE Board 2023 Exams

Example 15 Important Deleted for CBSE Board 2023 Exams

Example 16 Important Deleted for CBSE Board 2023 Exams

Example 17

Example 18 Important You are here

Example 19

Example 20

Example 21

Example 22 Important

Example 23

Example 24 Important

Example 25

Example 26 Important

Example 27

Example 28 Important

Example 29

Example 30

Example 31 Important Deleted for CBSE Board 2023 Exams

Example 32 Important Deleted for CBSE Board 2023 Exams

Example 33 Important

Example 34 Important Deleted for CBSE Board 2023 Exams

Chapter 4 Class 12 Determinants

Serial order wise

Last updated at March 16, 2023 by Teachoo

Example 18 Find the equation of the line joining A(1, 3) and B(0, 0) using determinants and find k if D(k, 0) is a point such that area of triangle ABD is 3 sq units. Equation of line Let L be the line joining the A(1, 3) & B(0, 0) Let (x, y) be the third point on line Since all the three points lie on the same line, they do not from a triangle Hence, Area of triangle = 0 Thus, ∆ = 0 We know that Area of triangle is given by ∆ = 1/2 |■8(x1&y1&[email protected]&y2&[email protected]&y3&1)| Here, ∆ = 0 x1 = x , y1 = y x2 = 1 , y2 = 3 x3 = 0 , y3 = 0 3 points collinear Area of triangle = 0 Area of triangle ≠ 0 Putting values 0 = 1/2 |■8(𝑥&𝑦&[email protected]&3&[email protected]&0&1)| 0 = 1/2 (𝑥|■8(3&[email protected]&1)|−𝑦|■8(1&[email protected]&1)|+1|■8(1&[email protected]&0)|) 0 = 1/2 ( x (3 – 0) – y (1 – 0) +1 (0 – 0)) 0 = 1/2 (x (3) – y (1) + 0) 0 = 1/2 (3x – y) 2 × 0 = 3x – y 0 = 3x – y 3x – y = 0 y = 3x Thus, the equation of line joining A & B is y = 3x Also given a point D (k, 0) & Area of triangle ∆ ABD is 3 square unit Since, Area of triangle is always positive , ∆ can have both positive and negative sings ∴ ∆ = ± 3 We have A (1, 3) : x1 = 1, y1 = 3 B (0, 0) : x2 = 0, y2 = 0 D (k, 0) : x3 = k , y3 = 0 Area of triangle is ∆ = 1/2 |■8(x1&y1&[email protected]&y2&[email protected]&y3&1)| ± 3 = 1/2 |■8(1&3&[email protected]&0&[email protected]&0&1)| ± 3 = 1/2 (1|■8(0&[email protected]&1)|−3|■8(0&[email protected]&1)|+1|■8(0&[email protected]&0)|) ± 3 = 1/2 ( 1 (0 – 0) – 3 (k – 0) +1 (0 – 0)) ±3 = 1/2 (0 – 3 (k) + 0) ±3 = 1/2 ( –3k) ± 6 = –3k So, 6 = –3k or –6 = –3k 6 = –3k 3k = 6 k = 6/(−3) = –2 –6 = – 3k –3k = –6 k = (−6)/(−3) = 2 Hence, the value of k is 2 or –2