




Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6 Deleted for CBSE Board 2023 Exams
Example 7 Deleted for CBSE Board 2023 Exams
Example 8 Deleted for CBSE Board 2023 Exams
Example 9 Important Deleted for CBSE Board 2023 Exams
Example 10 Important Deleted for CBSE Board 2023 Exams
Example 11 Deleted for CBSE Board 2023 Exams
Example 12 Deleted for CBSE Board 2023 Exams
Example 13 Deleted for CBSE Board 2023 Exams
Example 14 Important Deleted for CBSE Board 2023 Exams
Example 15 Important Deleted for CBSE Board 2023 Exams
Example 16 Important Deleted for CBSE Board 2023 Exams
Example 17
Example 18 Important You are here
Example 19
Example 20
Example 21
Example 22 Important
Example 23
Example 24 Important
Example 25
Example 26 Important
Example 27
Example 28 Important
Example 29
Example 30
Example 31 Important Deleted for CBSE Board 2023 Exams
Example 32 Important Deleted for CBSE Board 2023 Exams
Example 33 Important
Example 34 Important Deleted for CBSE Board 2023 Exams
Last updated at March 16, 2023 by Teachoo
Example 18 Find the equation of the line joining A(1, 3) and B(0, 0) using determinants and find k if D(k, 0) is a point such that area of triangle ABD is 3 sq units. Equation of line Let L be the line joining the A(1, 3) & B(0, 0) Let (x, y) be the third point on line Since all the three points lie on the same line, they do not from a triangle Hence, Area of triangle = 0 Thus, ∆ = 0 We know that Area of triangle is given by ∆ = 1/2 |■8(x1&y1&[email protected]&y2&[email protected]&y3&1)| Here, ∆ = 0 x1 = x , y1 = y x2 = 1 , y2 = 3 x3 = 0 , y3 = 0 3 points collinear Area of triangle = 0 Area of triangle ≠ 0 Putting values 0 = 1/2 |■8(𝑥&𝑦&[email protected]&3&[email protected]&0&1)| 0 = 1/2 (𝑥|■8(3&[email protected]&1)|−𝑦|■8(1&[email protected]&1)|+1|■8(1&[email protected]&0)|) 0 = 1/2 ( x (3 – 0) – y (1 – 0) +1 (0 – 0)) 0 = 1/2 (x (3) – y (1) + 0) 0 = 1/2 (3x – y) 2 × 0 = 3x – y 0 = 3x – y 3x – y = 0 y = 3x Thus, the equation of line joining A & B is y = 3x Also given a point D (k, 0) & Area of triangle ∆ ABD is 3 square unit Since, Area of triangle is always positive , ∆ can have both positive and negative sings ∴ ∆ = ± 3 We have A (1, 3) : x1 = 1, y1 = 3 B (0, 0) : x2 = 0, y2 = 0 D (k, 0) : x3 = k , y3 = 0 Area of triangle is ∆ = 1/2 |■8(x1&y1&[email protected]&y2&[email protected]&y3&1)| ± 3 = 1/2 |■8(1&3&[email protected]&0&[email protected]&0&1)| ± 3 = 1/2 (1|■8(0&[email protected]&1)|−3|■8(0&[email protected]&1)|+1|■8(0&[email protected]&0)|) ± 3 = 1/2 ( 1 (0 – 0) – 3 (k – 0) +1 (0 – 0)) ±3 = 1/2 (0 – 3 (k) + 0) ±3 = 1/2 ( –3k) ± 6 = –3k So, 6 = –3k or –6 = –3k 6 = –3k 3k = 6 k = 6/(−3) = –2 –6 = – 3k –3k = –6 k = (−6)/(−3) = 2 Hence, the value of k is 2 or –2