Check sibling questions

Example 24 - Verify that A adj A = |A| I. Also find A-1 - Examples

Example 24 - Chapter 4 Class 12 Determinants - Part 2
Example 24 - Chapter 4 Class 12 Determinants - Part 3 Example 24 - Chapter 4 Class 12 Determinants - Part 4 Example 24 - Chapter 4 Class 12 Determinants - Part 5 Example 24 - Chapter 4 Class 12 Determinants - Part 6

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Example 24 If A = [■8(1&3&[email protected]&4&[email protected]&3&4)], then verify that A adj A = |A| I. Also find A–1. Solving L.H.S A (adj A) First Calculating adj A adj A = [■8(A_11&A_21&[email protected]_12&A_22&[email protected]_13&A_23&A_33 )] Now, A = [■8(1&3&[email protected]&4&[email protected]&3&4)] M11 = |■8(4&[email protected]&4)| = 4(4) – 3(3) = 7 M12 = |■8(1&[email protected]&4)| = 1(4) – 1(3) = 1 M13 = |■8(1&[email protected]&3)| = 1(3) – 1(4) = –1 M21 = |■8(3&[email protected]&4)| = 3(4) – 3(3) = 3 M22 = |■8(1&[email protected]&4)| = 1(4) – 1(3) = 1 M23 = |■8(1&[email protected]&3)| = 1(3) – 1(3) = 0 M31 = |■8(3&[email protected]&3)| = 3(3) – 4(3) = – 3 M32 = |■8(1&[email protected]&3)| = 1(3) – 1(3) = 0 M33 = |■8(1&[email protected]&4)| = 1(4) – 1(3) = 1 Now, A11 = (–1)1 + 1 M11 = (–1)2 7 = 7 A12 = (–1)1+2 M12 = (–1)3 (1) = –1 A13 = (–1)1+3 M13 = (–1)4 (–1) = –1 A21 = (–1)2+1 M21 = (–1)3 (3) = –3 A22 = (–1)2+2 M22 = (–1)4 (1) = 1 A23 = (–1)2+3 M23 = (–1)5 0 = 0 A31 = (–1)3+1 M31 = (–1)4 (– 3) = –3 A32 = (–1)3+2 M32 = (–1)5 0 = 0 A33 = (–1)3+3 M33 = (–1)6 (1) = 1 Thus, adj (A) = [■8(A_11&A_21&[email protected]_12&A_22&[email protected]_13&A_23&A_33 )] = [■8(7&−3&−[email protected]−1&1&[email protected]−1&0&1)] Finding A (adj A) A adj (A) = [■8(1&3&[email protected]&4&[email protected]&3&4)] [■8(7&3&−[email protected]−1&1&[email protected]−1&0&1)] = [■8(1(7)+3(⤶7−1)+3(−1)&1(−3)+3(1)+3(0)&1(−3)+3(0)+3(1)@1(7)+4(⤶7−1)+3(−1)&1(−3)+4(1)+3(0)&1(−3)+4(0)+3(1)@1(7)+3(⤶7−1)+4(−1)&1(−3)+3(1)+4(0)&1(−3)+3(0)+4(1))] = [■8(7−3−3&−3+3+0&−[email protected]−4−3&−3+4+0&−[email protected]−3−4&−3+3+0&−3+0+4)] = [■8(1&0&[email protected]&1&[email protected]&0&1)] Solving R.H.S |A| I Calculating |A| |A| = |■8(1&3&[email protected]&4&[email protected]&3&4)| = 1 (4(4) – 3(3)) – 3(1(4) – 1(3)) + 3(1(4) – 1(3)) = 1(7) – 3(1) +3( – 1) = 7 – 3 – 3 = 1 Now, |A| I = 1 [■8(1&0&[email protected]&1&[email protected]&0&1)] = [■8(1&0&[email protected]&1&[email protected]&0&1)] = L.H.S Thus, A(adj A) = |A| I Hence proved Finding A-1 We know that A-1 = 1/(|A|) (adj A) exists if |A| ≠ 0 Here, |A| = 1 ≠ 0 Thus A-1 exists So, A-1 = 1/(|A|) (adj A) = 1/1 [■8(7&−3&−[email protected]−1&1&[email protected]−1&0&1)] = [■8(𝟕&−𝟑&−𝟑@−𝟏&𝟏&𝟎@−𝟏&𝟎&𝟏)]

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.