Solve all your doubts with Teachoo Black (new monthly pack available now!)

Are you in **school**? Do you **love Teachoo?**

We would love to talk to you! Please fill this form so that we can contact you

Examples

Example 1

Example 2 Important

Example 3

Example 4

Example 5 Important

Example 6

Example 7 Important

Example 8 Important

Example 9 Important Deleted for CBSE Board 2023 Exams

Example 10 Important Deleted for CBSE Board 2023 Exams

Example 11 Deleted for CBSE Board 2023 Exams

Example 12 Deleted for CBSE Board 2023 Exams

Example 13 Important Deleted for CBSE Board 2023 Exams

Example 14 Important Deleted for CBSE Board 2023 Exams You are here

Chapter 6 Class 10 Triangles

Serial order wise

Last updated at May 29, 2018 by Teachoo

Example 14 O is any point inside a rectangle ABCD (see Fig. 6.52). Prove that OB2 + OD2 = OA2 + OC2. Given : Rectangle ABCD , and a point O inside rectangle . To prove :- OB2 + OD2 = OA2 + OC2 Proof :- Let us draw a line PQ, through O which is parallel to BC. Hence, PQ II BC ⇒ PQ II AD All angles of a rectangle are 90° , So, ∠ A = ∠ B = ∠ C = ∠ D = 90° Since, PQ II BC & AB is the transversal ∠ APO = ∠ B ∠ APO = 90° Similarly, we can prove ∠BPO = 90° , ∠ DQO = 90° & ∠CQO = 90° Using Pythagoras theorem. (Hypotenuse)2 = (Height)2 + (Base)2 Similarly, In right triangle ∆ 𝑂𝑄𝐶 , OC2 = OQ2 + CQ2 …(3) & In right triangle ∆ 𝑂𝐴𝑃 , OA2 = AP2 + OP2 …(4) Adding equation (1) and (2) OB2 + OD2 = BP2 + OP2 + OQ2 + DQ2 = (CQ)2 + (OP)2 + (OQ)2 + (AP)2 = CQ2 + OQ2 + OP2 + AP2 = OC2 + OA2 Thus, OB2 + OD2 = OC2 + OA2 Hence proved